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The I2 Grimoire: REINFORCEMENT LEARNING
This is the REINFORCEMENT LEARNING unit of the I2 Grimoire book. Find the full book

and other units on our website: https://grimoire.uw-i2.org.

We are Interactive Intelligence, an organization of interdisciplinary thinkers that seek to probe
intelligence through the intersection of AI, neuroscience, and related fields. This book serves as a
launchpad for the basic theory that underlies major AI systems and covers five large (intersecting)

spheres: Machine Learning, Deep Learning, Computer Vision, Reinforcement Learning, and
Language Modeling. While by no means a thorough overview of any one of these fields, this book

serves as a starting point that will paint a large picture in your mind about the five
aforementioned topics. This book is written in layman’s english, and introduces some complex
(but core) math while explaining as much intuition behind it as possible. Regardless of your
background, there is something interesting you will learn in these pages. Feel free to explore

sections that interest you, backtracking if you encounter unfamiliar concepts.

This book is a culmination of many months of work by very talented students from the University
of Washington. It was entirely created by I2 members, and we hope that you enjoy what we have

written on these pages and leave better equipped to navigate this world we share with AI
algorithms.

Additional Information
This book was written to pair with the Interactive Intelligence intro to NeuroAI course, which

lives here: Interactive Intelligence Intro to NeuroAI Course Website. There are questions
associated with some sections, which serve as optional exercises for you to test your

understanding. If you have questions or comments on the information in this book, please contact
varunananth1@gmail.com
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1 What is Reinforcement Learning?
1.1 Problem Definition
Reinforcement Learning is a subfield of AI that concerns itself with optimizing
behavior of agents in environments using rewards. It is focused on finding
efficient ways to train an agent (think of Mario) to reach a goal (the flag) within an
environment (World 1-1) by offering rewards (coins, distance to flag, etc.). The
example of Mario is actually quite narrow, as it restricts RL to “game-like”
situations only. Although many popular examples of RL are about solving/beating
some puzzle/game, the true extent of the field is much richer. There are projects
that heavily rely on concepts from RL that may not be obvious at first. For
example, AlphaTensor is a model published by Google DeepMind that searches for
ways to perform large matrix multiplications in fewer operations than the standard
method that we see commonly used. A significant part of this algorithm is
considered reinforcement learning. Also, many Large Language Models (LLMs) use
reinforcement learning with human feedback (RLHF) for finishing touches in their
training process. ChatGPT is one of these LLMS! Neither of these examples
present as a game or puzzle, yet RL is used extensively within them.

As mentioned before: many examples of RL are within game-like environments, but
it is important to understand that the “agent” and “environment” can be almost
anything that you wish to define them as (there are a few restrictions). A more
general definition of RL can perhaps be “using trial and error to learn a strategy
that maximizes reward in a selected environment”. The field of reinforcement
learning pulls a lot from optimal control theory, machine learning, probability
theory, and a little bit of psychology and neuroscience. Stepping through all of RL
in an article is nearly impossible, there are whole books on 1

100
of this content. As

such, this article will introduce common symbols, provide some priming on large RL
subcategories, and end with a couple algorithms and their strengths/weaknesses.

1.2 Common Symbols and Definitions
Here are some common symbols used in RL and their meanings. Analogies have
been provided for ease of understanding.

State: s ∈ S

• Most commonly represented as a vector, a state is a snapshot of the world at
some timestep t (often denoted as st). A state records important information
about the current frozen moment in time that often determines what will

5



happen next. The way the vectors represent the state is a choice dependent on
the problem.

• An example of a state from the game Pong would be a vector holding the
y-positions of the paddles, the velocity of the paddles, the position of the ball,
and the velocity of the ball. It could also contain the score. Note that just raw
positions are not “good enough” to comprise a state, because it would be
difficult to determine what could happen next from just positions (i.e. The
ball is at (0,0). Is it moving left or right?)

Action: a ∈ A

• An action is a choice that the agent (see below) makes within the environment
that often influences the subsequent state. Actions are taken at a time t and
are denoted as at. Actions can be represented as scalars between a range (0-1),
a one-hot encoded vector ([1,0,0,0]), or an unbounded vector ([0.5, -3, 2,
0.001]). The choice of how an action is represented depends on the problem.

• An example of an action from the game Pong would be a number between -1
and 1 determining the speed of vertical movement for the next timestep. Note
that this implicitly encodes the “do nothing action” of 0 (standing still).

Agent:

• An agent is an actor that takes in the current state of the environment and
acts optimally (or tries to) in order to maximize reward.

• An example of an agent would be Mario, the character.

Policy: π

• A policy is a function that outputs action(s) given the state of the
environment. Agents and policies are closely tied together because the job of
an agent is to learn a good policy. There are two main types of policies.
Deterministic policies are represented as π(s)→ a, meaning that there is a
mapping between each state of the world and the best action to take at that
time. A stochastic policy can be defined as π(at|st). This means that given
a state at time t, a policy will give you a distribution over all possible actions,
with probabilities corresponding to how good that action is at that timestep.
The agent can then select an action based on these probabilities.

• An example of a policy would be how Mario behaves based on his
surroundings. Note the difference between this and the character Mario. It is
similar to the difference between policy and agent.
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Environment:

• A space, the world, that the agent can interact with and influence. Can be
thought of as “all possible states”. Also implicitly contains transition
dynamics, or probability distributions of future states depending on the
current state and action (p(st+1|st, at))

• An example of an environment would be World 1-1 from Mario. Not just a
snapshot of the world at a time t, but the idea of this “level” to beat.
Transition dynamics for this environment would be the physics engine and
enemy movement.

Reward: r

• Perhaps one of the most important terms. A reward is a scalar value given to
the agent after it takes an action, determined through a reward function
that considers the state-action pair at time t and its “optimality”. This is
represented as R(st, at) = rt. Generally, the higher r is, the better the action
at the agent took based on state st. This reward value serves as a learning
signal for the agent, and is used to update its parameters to improve
performance on future actions.

• For example, if Mario is standing next to lava (state st) and he took the action
“go forward”, the reward rt as determined by r(st, at) would be very low,
perhaps even negative. Mario dies, and the agent tries again. Once this same
lava pit is reached, Mario instead takes the “jump” action and lands on the
other side of the lava pit safely. Since he moved closer to his goal, the reward
function spits out a high reward. This reinforces the rule “If next to lava, then
jump”. Through this trial and error, the policy is slowly updated until Mario is
able to maximize reward by beating the level!

Trajectory: τ

• A compact way to represent the path an agent took through the environment
during one episode and the rewards it received for doing so. An episode
begins with the very first state s0 and continues until the agent dies, reaches
its goal, or runs out of time. Trajectories are useful because they store enough
information to “replay” the episode entirely. For an episode of length T , the
trajectory would be τ = (s0, a0, r0, s1, a1, r1, ..., sT , aT , rT ).

• A trajectory in Mario would record every frame of the game, every action
taken at each timestep, and the rewards given to Mario. You can think of it as
“recording” an agent’s playthrough of World 1-1.
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1.3 Markov Decision Process
I mentioned earlier that there were a few restrictions to defining something as an
RL problem. The Markovian property is one of them. The transitions within an
environment from state to state must be a Markovian decision process (MDP). For
a decision process to be Markovian, the transition from state st to st+1 should be
independent of the “history” of that state, i.e. states s0, s1, ..., st−1. Why is this
helpful? Well firstly, it makes it such that a policy can be learned much easier since
we have less unique state-action pairs to deal with.

Think about it: If there were 100 states and 4 actions, a policy would only need to
deal with 100× 4 state-action pairs total if the transition dynamics were Markovian.
With today’s compute, you can even create a table that maps each state to the
optimal action for that state and do it with brute force search. However, if a state’s
history needs to be considered, then determining the proper action to take at st
would require considering the 100t paths possible to reach st. With the decision
process not being Markovian, Mario jumping up over a block and ending up past it,
and Mario running under it but ending up at the same spot would not be the same
state st! This combinatorial explosion makes things way harder.

Another way to formalize this can be seen below:

p(s1, s2, s3, ..., st) = p(s1)p(s2|s1)p(s3|s2)...p(st|st−1)

The left-hand side of the equation is the probability of events s1 AND s2 AND s3...
happening. Now on the right hand side; Note how p(s3|s2) (probability of s3
happening given that s2 has already happened) does not include s1 anywhere,
despite it being in the “history” of s2. The movement between s2 → s3 is
independent of s1. With an MDP, you can find the probability of a sequence of
states quite easily with much less compute than if you had to consider the history
of the state. This algorithm tries to get an RL agent to accomplish a task by
learning from an expert doing the same task.

This is very important: how you define states is often what makes a problem
behave as an MDP. Remember the example about Pong states earlier? If we were
to capture only the positions of the paddles/ball, then we would NOT have an
MDP. This is because by looking at the ball at a position (e.g. (0,0) at t = 1) we
cannot tell if it is moving forward, backward, up, or down. We would need to look
into its history to determine that. If the ball was at (-1,-1) at t = 0, and now is at
(0,0), we can assume that it has a velocity of [1,1] and will be at (1,1) at t = 2.
Since the transition from s1 → s2 is dependent on s0, this is not an MDP. However,
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if we include the velocity [1, 1], into the state along with the position, this problem
goes away! We no longer need to look into a state’s history to determine how it will
transition. Everything is captured in this clever definition of a state.

1.4 On vs. Off-Policy RL
A short but important note on the terms on-policy and off-policy RL. If you
decide to pursue RL on a deeper level, the distinction will become more important
as the math behind algorithms in each has different assumptions and conclusions.
However, for simplicity, here are some basic definitions:

On-Policy: On-policy reinforcement learning algorithms can only use information
from the current trajectory to update its policy. In other words, the agent tries to
solve the problem (perhaps a few times), updates its policy based on the rewards
received, and tries again. Once the policy is updated, the information (trajectories)
gathered using the pre-update policy becomes “useless”. Since the agent is
following a fresh new policy, it is mathematically improper to draw examples from
a different distribution to update itself. While algorithms that are on-policy tend
to be more stable, they are much less sample efficient and have high variance.

Quick Definition: Sample efficiency is how well a model can use the information
provided within datapoints to learn patterns. A sample efficient model would just
need to see 10 examples to learn a pattern. A non-sample efficient model may need
1000’s. Your brain is one of the most sample efficient models out there!

Off-Policy: Off-policy algorithms are allowed to use information collected from
“older” policies to update the current one. This makes them much more sample
efficient, as you can use the same trajectory to optimize the policy many times as
opposed to just once. Off-policy RL algorithms, while more sample efficient, tend
to be less stable and require a few tricks to work properly.
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Synthesis Questions:

1. Think of a video game, board game, or puzzle that you like. Then do the following:

• Define the environment, and agent. What is the positive reward that the agent
should chase? Try to tie this to a mathematically calculable formula (i.e. r = 1

d
where d is the distance to the flagpole).

• Define as concretely as possible a representation of states and actions for this
environment/agent. Can you show that the states you chose could form an MDP?

2. Do you think an on-policy or off-policy algorithm would suit your problem better
(there is no right answer for this one, it is a hard question)?

2 Imitation Learning
2.1 Basic Behavior Cloning
Taking a step back from the plethora of notation, we will approach RL somewhat
naively through behavior cloning, one of the simplest forms of RL. Rewards are
not even needed in this problem formulation, and it blurs the lines between
supervised learning and reinforcement learning.

In this problem formulation, we assume we have an expert from which we get many
(s∗, a∗) pairs. The superscript stars denote that this information is “optimal”. We
assume that the expert has solved the problem perfectly. For example, we would
allow a human with a remote control to operate a robotic arm and perform a task.
The telemetry data would be recorded and this dataset is referred to as D, from
which we can sample (s∗, a∗) pairs. We can now write an optimization objective:

argmax
θ

[
E(s∗,a∗)∼D[logπθ(a

∗|s∗)]
]

This seems complicated so let’s break it down:

↓

argmax
θ

[
·
]

Argmax with an underset θ means that we wish to find some θ that will result in
the maximum possible value for the function that follows. For example:
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argmax
x

[
−x2

]
= 0

0 is the value of x that maximizes −x2, so argmax
x

= 0.

E(s∗,a∗)∼D[·]
↓

argmax
θ

[
E(s∗,a∗)∼D[·]

]
A subscript of an expectation can be somewhat ambiguous, and mean slightly
different things depending on context. In this case, we are defining where s∗ and a∗

come from (the expert distribution D). This becomes important because these two
variables are part of the final term we introduce:

logπθ(a
∗|s∗)
↓

argmax
θ

[
E(s∗,a∗)∼D[logπθ(a

∗|s∗)]
]

πθ is the policy, parameterized by θ. What this means is that if this policy is
represented by a neural network, then θ are the weights and biases. logπθ(a

∗|s∗) is
the “log-probability” of the model choosing a∗ given s∗. The highest this probability
can be is 1. Note that the logarithm of 1 evaluates to 0. Anything below 1 will
evaluate to be exponentially more negative/worse. So if we wish to find the weights
and biases (θ) that maximize logπθ(a

∗|s∗), we need to select weights and biases that
assign a probability of 1 to a∗ given s∗ and 0 to all other actions. We know that a∗

and s∗ come from an expert distribution D thanks to the subscript. Therefore if we
find θ, we have a policy that will act optimally given the states it has seen! This
notation may seem heavy, but it is a primer for more complex algorithms.

How this is implemented in code is quite simple. We simply take every (s∗, a∗) ∼ D
pair and label the s∗ as the data and the a∗ as the label. We then train a neural
network on this data (input dimensionality is the dimensionality of s, output
dimensionality is the dimensionality of a), and call it πθ. We now have a policy
that can accept a state, and act accordingly. This all seems much too simple
though. What is the drawback?
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2.2 Problems with Behavior Cloning
There are two compounding problems with behavior cloning that make a basic
implementation mostly unviable for complex situations.

The first is that it has quadratically compounding error. There is a proof for
this, but it is also intuitive. Say, due to physical forces or minor perturbations, that
a robot cloning the behavior of a human gets 0.1cm off from where it should be
after taking action a∗t at st (optimal action at state st). We are now in dangerous
territory, as the state the robot is in currently is not found in any training example.
As a result, the robot takes a sub-optimal action and ends up 1cm off track. It will
be near impossible for the robot to complete its task after a few more missteps, and
now it is grabbing your ear instead of the apple it was supposed to. Behavior
cloning leads to very precarious paths to follow. If the robot can stay perfectly on
track and nothing new comes up, then it is able to complete the task perfectly.
This is not really useful though. You may as well resort to optimal control theory
for robotics, which give you much more guarantees and a little more flexibility. One
way to mitigate this is to add lots of training examples, but to even begin to the
solve the problem, you need an exorbitant amount of data. There are more
intelligent ways to do this, like the DAgger algorithm discussed later.

The second problem is called mode averaging. If we have two paths around an
obstacle, for example a tree, we can go around it to the left or to the right. A
human knows there is no inherent difference between these two paths, and takes
each one with equal probability. However, training a model on this data does not
mean the model will also go around the tree in these two ways. Instead it averages
the two behaviors and ends up going straight into the tree. It is clear that this is
sub-optimal behavior, but it is an unavoidable consequence if you have a policy
with one mode. For example, a Gaussian policy has only one peak, and will pick
one “best” action, which will be in between the two peaks of the expert
distribution, and this means crashing. One way to mitigate this is to choose a more
expressive policy class. A mixture of Gaussians, for example, can have ≥ 1 peak.
This prevents the mode averaging problem but increases the complexity of your
model by a lot.
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Figure 1: An illustration demonstrating the issues that arise from mode-averaging within behavior
cloning algorithms. The green and blue peaks represent choosing to go left or right around the

obstacle, and the black dashed line represents what a simple policy will converge on.

3 Proofs for Problems with Behavior Cloning
3.1 Mode Averaging
Below is a walkthrough demonstrating how mode-averaging comes out as a problem
in behavior cloning:

Take our original behavior cloning objective

argmax
θ

[
E(s∗,a∗)∼D[logπθ(a

∗|s∗)]
]

We define πe as the expert policy. Under the expectation E(s∗,a∗)∼D,
logπe(a

∗|s∗) = 0 is always true. This is because the expert policy will always assign
a∗ (optimal action) a probability of 1 given a state s∗. πe(a

∗|s∗) = 1, log(1) = 0, so
logπe(a

∗|s∗) = 0. We can therefore insert into the equation:

argmax
θ

[
E(s∗,a∗)∼D[logπθ(a

∗|s∗)− logπe(a
∗|s∗)]

]
Split the expectation into two nested expectations. (s∗, a∗) ∼ D can be rewritten as
s∗ ∼ pπe(·) followed by a∗ ∼ πe(·|s∗). In english, this means we get a state s∗ by
sampling from possible states the expert (πe) has explored and then sample the
action a∗ from the policy πe given that it considers s∗. The end result is the same,
as we have the variables s∗ and a∗ to use, and they come from the expert.

argmax
θ

[
Es∗∼pπe (·)[Ea∗∼πe(·|s∗)[logπθ(a

∗|s∗)− logπe(a
∗|s∗)]]

]
Invert the whole expression from an argmax to an argmin by multiplying by -1,
which carries through all the expectations because aE[X] = E[aX].
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argmin
θ

[
Es∗∼pπe (·)[Ea∗∼πe(·|s∗)[logπe(a

∗|s∗)− logπθ(a
∗|s∗)]]

]
Use properties of logarithms to rewrite the innermost term:

argmin
θ

[
Es∗∼pπe (·)[Ea∗∼πe(·|s∗)[log

πe(a
∗|s∗)

πθ(a∗|s∗)
]]

]
For the final step, we must introduce the concept of F-divergence. An F-divergence
is, in simple terms, a function that measures the “distance” between two functions.
The general form of an F-divergence Df is:

Df (p(x), q(x)) = Eq(x)

[
f

(
p(x)

q(x)

)]
You may be familiar with Kullback-Leibler Divergence (KL divergence) which is a
form of F-divergence. KL divergence quantifies the difference between two
probability distributions. If you define an F-divergence with f(x) = xlog(x), you
get what is called the forward KL divergence.

Forward KL Divergence = DKL(p(x), q(x)) = Ep(x)

[
log

p(x)

q(x)

]
A quick proof of this fact is shown below. We use the property that
Eq(x)[p(x)] =

∫
p(x)q(x) dx.

Given: f(x)← xlogx

Df (p(x), q(x)) = Eq(x)

[
p(x)

q(x)
log

p(x)

q(x)

]
=

∫
p(x)

q(x)
log

p(x)

q(x)
q(x) dx

=

∫
p(x)log

p(x)

q(x)
dx

DKL(p(x), q(x)) = Ep(x)

[
log

p(x)

q(x)

]
We can apply the definition of forward KL divergence to the inner expectation
shown before.

Ea∗∼πe(·|s∗)[log
πe(a

∗|s∗)
πθ(a∗|s∗)

] = DKL(πe(·|s∗), πθ(·|s∗))
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We are in this expression calculating the KL divergence between the expert policy
action distribution given state s∗ and the agent’s action distribution given state s∗.
We can now insert this back into the original equation and draw some insights:

argmax
θ

[
E(s∗,a∗)∼D[logπθ(a

∗|s∗)]
]
= argmin

θ

[
Es∗∼pπe (·)[DKL(πe(·|s∗), πθ(·|s∗))]

]
We now see the original behavior cloning problem formulation written as an
F-divergence (more specifically, KL divergence) minimization problem. Since the F
divergence is forward KL divergence, it is mode-averaging by nature. In other words,
trying to minimize the forward KL divergence between a multimodal expert policy
πe and a single-mode actor policy πθ will result in finding a policy that does not fit
to either mode, but seeks to the mean of both. Seeing the KL divergence clearly in
the equation makes this an unavoidable fact. This gives us a much more concrete
basis for why we should expect to observe the crashing behavior discussed earlier!

Figure 2: The blue curve is our single-mode Gaussian decision policy and the bimodal orange line
is our expert policy (can go left or right around the tree). The top graph shows what we would

like to happen, which is choosing a mode and sticking with it. However, the bottom graph shows
what actually happens when we minimize forward KL divergence. This is mode-averaging

behavior (crashing into the tree).
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This analysis also gives us another avenue by which to improve behavior cloning
instead of selecting a more expressive policy class: Find ways to rewrite the original
objective such that we end up with a different F-divergence that is not
mode-averaging. There are papers written about this that I suggest you read if you
are very interested in this subsection of RL.

4 DAgger Algorithm
DAgger seeks to preserve the core of behavior cloning — learning by following an
expert — but making it so that we are not on a “precarious ledge” and small
perturbations do not send us way off track. DAgger stands for Dataset
Aggregation, and improves the performance of behavior cloning by augmenting D
with more human data, but intelligently.

A basic DAgger algorithm will look like the following:

1. Train πθ (initial policy) on examples from D, the dataset of examples from the
expert

2. Run the policy πθ and record the trajectory τ = (s0, a0, s1, a1...) or the actions
it takes in a sequence

3. Have a human label each st ∈ τ with the optimal action a∗. Call all these
(s, a) pairs Dπθ

4. Add Dπθ
, or the new state action pairs, to D. D ← D ∪Dπθ

. The datasets
have been aggregated!

5. Repeat until the agent behaves well.

Why does this work well? In essence, you are “extending the precarious ledge” that
behavior cloning usually creates. A human adding corrective labels at critical
failure points lets the agent know what to do at those points to get back on track.
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Figure 3: A visualization of how DAgger helps keep the agent performing well. We first see the
agent (x̂) deviate from the expert (x), but we then take these observations of where the agent

failed and give it instructions on how to get back on track. With enough iterations, a lot of failure
cases can be mitigated.

Behavior cloning is a section of RL that may seem simple at first, but can be quite
involved when you try to solve the problems that come with a naive
implementation. The next few sections will cover more “core” RL algorithms and
analyze their strengths/weaknesses.
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Synthesis Questions:

1. Write definitions for the following symbols:

• (st, at)

• (s∗, a∗)

• D

2. What does the θ in πθ represent?

3. What is the issue of quadratically compounding error in behavior cloning, and how
does DAgger mitigate it?

4. What is the issue of mode averaging in behavior cloning, and how do you prevent it
from happening?

5 Policy Gradient
5.1 Basic Policy Gradient

Figure 4: An illustration showing how the agent and environment communicate through actions,
states, and rewards in a traditional RL setting. The subscript t is for timestep.

Let’s start by introducing a new problem scenario. in this hypothetical, we do not
have an expert to learn from. Instead, we receive rewards from the environment.
This is the more traditional RL problem setup we discussed earlier. In this case, we
have to define a new objective function that is based on rewards, not expert
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state-action pairs. Lets just do the simplest thing and try to maximize the rewards
that the agent receives over time. How can we write this down? Well, the sum of
rewards an agent receives over the course of a trajectory is called the return of
that trajectory. It is denoted as R(τ). It can have a few different formulations.
Here is the one that will be important for policy gradient (PG):

Infinite Horizon Discounted Reward:

R(τ) =
∞∑
t=0

γtr(st, at)

The st and at come from the trajectory τ . We simply add up all the rewards
throughout the trajectory, but reducing the contribution of r(st, at) way in the
future through the use of the discounting factor γ (usually around 0.85-0.99). This
is because we don’t value the future returns as much as immediate ones. As
t→∞, γt → 0. This ensures that really long trajectories don’t result in a
incalculably large return. For example, a reward of 100 at t = 0 contributes 100 to
the sum, but if the same reward is received 25 steps in the future, or at timestep
t = 25 with γ = 0.95, a reward of 100 only contributes about 0.9525 · 100 ≈ 27 to
the sum. By timestep t = 1000, rewards are not even considered.

We can now be more specific about our objective. We want to maximize the return
that the agent receives. Here is how we do it. We first create an equation that has
policy parameters as its input. We want this function to give us the expected
return if we were to use a policy with these parameters. Now we want to find the
perfect parameters θ that gives us the highest return. We can do this by
performing gradient ascent on the parameters. This is why the method is called
policy gradient!

Below is the equation we want to maximize using gradient ascent:

J(θ) = Eτ∼πθ
[R(τ)]

In English: Maximize the expected (E) return of trajectories (R(τ)) explored
(τ ∼ πθ) by the agent by adjusting the parameters of the model (θ). The model in
this case would be a neural network so θ represents weights and biases.

Our ultimate goal is to calculate ∇θJ(θ) and update θ as such on each iteration i:

θi+1 ← θi +∇θJ(θ)
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If we repeat this process many times, we should have parameters to a policy that
gives you high returns. This means that our agent will be “playing” the game
properly, and Mario will reach the flagpole!

The proof for this is later in the article, but calculating the gradient of J(θ) gives
us the following:

∇θJ(θ) ≈
1

N

N∑
i=0

T∑
t=0

[
∇θlogπθ(a

i
t|sit)

T∑
t′=0

γt′r(sit′ , a
i
t′)

]
It seems complicated, but it means something quite intuitive. Firstly, the ≈ exists
because this is a “Monte-Carlo” approximation to the actual gradient, which is in
an expectation. Evaluating this would mean exploring every single possible
trajectory, which is impossible for anything but toy problems. This is what the
outer sum 1

N

∑N
i=0 signifies: Try a few trajectories and average your results, as

opposed to checking all of them. It is similar in principle to stochastic gradient
descent (SGD).

The inner summation is where the meat of PG lies. Notice that there are two t
variables, t and t′. The summation regarding t′ is just the expanded form of the
return we saw earlier. This is a “weight” or “scaler” for the very important term
∇θlogπθ(a

i
t|sit). This term represents the gradients of the log-likelihood of taking

action at given st under policy πθ. That is a bit confusing, but here is the
important bit: The higher this value is, the more likely the policy will be to take this
same trajectory again after performing an update. This is why we weight it by the
return.

(1) A high return, say 100, indicates that the agent was on a good trajectory. We
want to increase the chances we take these same actions at these same states by a
lot. So we scale the gradients by 100 (the return). After an update to the weights,
our policy πθ is much more likely to find that good trajectory again. (2) Now say
the agent blunders and gets a trajectory with a return of 5. This is not very good,
so we don’t really want to take these same actions in the same states again. Not
much about the model changes. (3) Now say the agent does very poorly and gets a
return of -99. This is terrible! We actually push the gradients in the opposite
direction, making πθ less likely to make the same blunders that got us such a low
return after a parameter update.

Actually calculating this derivative ∇θlogπθ(a
i
t|sit) is taken care of by autodiff

within PyTorch, TensorFlow, or the deep learning library of your choice. You don’t
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need to worry about the computation too much. Doing a forward pass through the
network lets the library create a computation graph (what operations happened
and in what order) to then calculate gradients for the parameters θ. In short: the
actual derivative is done for you. The trick of PG is scaling it by the return to
make actions in good trajectories more likely to occur. Do this over and over again
N times and perform an update. Perform many updates and you will get an agent
that can play a complex game!

6 Advanced Policy Gradient Concepts
6.1 Return-to-Go
Despite seeming complex enough, Vanilla PG suffers from a few problems: The
biggest of them being that Vanilla PG is a high-variance estimator. What this
means is that you could train the model 100’s of times and change nothing but the
random seed used to initialize the weights, but get 99 failures and one success. It
will not train nor work consistently most of the time. Therefore more advanced PG
methods attempt to reduce the variance of the estimator.

The simplest of these advances is something called return-to-go estimation. It
deals with this part of the PG gradient:

T∑
t′=0

γt′r(sit′ , a
i
t′)

Notice that t′ will sum from 0 to T , regardless of what value t is at in the middle
summation. What this means is that, even when we are calculating gradients for
logπθ(a10|s10), we are scaling them by rewards gained from timesteps 0 to 9. This
is nonsensical, because actions at time t = 10 cannot affect the past! As such, we
make a slight adjustment to the formula for the PG gradient:

∇θJ(θ) ≈
1

N

N∑
i=0

T∑
t=0

[
∇θlogπθ(a

i
t|sit)

T∑
t′=t

γt′r(sit′ , a
i
t′)

]
Notice that in the third summation, we changed from t′ = 0 to t′ = t.

6.2 Baseline Function
Another way to reduce the variance of the estimator (without increasing the bias)
is to subtract a baseline function (b(st)) from the return. Due to how PG collects
samples to train on, scale variation between returns of trajectories makes the policy
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gradient unstable. Assume that the average reward through all trajectories is 10. A
“good” trajectory would have a return 15, and a bad trajectory would have a
return of 5. However, due to the fact that these are both positive, the probabilities
of taking actions that lead to these trajectories would both be increased, as opposed
to increasing one and decreasing the other. A baseline fixes this by centering
returns around 0.

∇θJ(θ) ≈
1

N

N∑
i=0

T∑
t=0

[
∇θlogπθ(a

i
t|sit)

(( T∑
t′=t

γt′r(sit′ , a
i
t′)

)
−b(st)

)]
The simplest baseline function is represented by R̄, which just is the average
reward over the sampled trajectories:

R̄ =
1

N

N∑
i=0

T∑
t=0

r(sit, a
i
t)

More complex baseline functions can be more effective, but begin to blend the line
between PG and another RL algorithm (Actor-Critic).

6.3 Natural Policy Gradient
The final PG improvement we will be covering (in brief) is Natural Policy Gradient
(NPG). A large issue that comes up within PG methods is overshooting the true
gradient. Remember the ≈ sign we introduced? That was because we sample N
trajectories and compute an approximate gradient to take a step. Agent
performance is very sensitive to small changes in the policy, so misstepping in a
parameter update could make the model completely collapse. We could choose a
very small step size, but this makes model training take much longer. Instead, we
add an additional constraint to our optimization. The notation for this is a bit
confusing, but the general idea is to add the following constraint:

DKL(πθ|πθi) ≤ ϵ

What we are saying here is that we want the difference between how the policy
behaves before vs. after a gradient step to be constrained by ϵ. This helps us reduce
the chance that a huge misstep occurs and throws our agent off track. We constrain
our gradient to push us in a better direction without sacrificing step size! The
implementation of this is beyond the scope of the article so we will not be covering
it.
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Figure 5: There are a few items in this diagram. The parabola and tangent show the issues of
large gradient steps when you have only a monte-carlo approximation to the true gradient. You
can wildly overshoot where you should be (θi+1).The dimensions of the stretched oval represent
the parameters of the policy, and how steps in the wrong direction can be disastrous since the

policy is very sensitive to small parameter shifts. What we don’t have in RL is an easy objective
to optimize on like the circle. These problems together are why NPG is useful.

Very advanced PG methods build off of NPG, and include trust region policy
optimization (TRPO) and proximal policy optimization (PPO). PPO was the RL
algorithm used to finetune ChatGPT, and is generally very powerful. I suggest
looking into both of these methods if you are interested in exploring policy gradient
methods more.

6.4 Proof for Gradient of the PG Objective
Below is a walkthrough demonstrating how to calculate the gradient of the policy
gradient objective function:

We first take a look at the function we want to calculate the gradient with respect
to θ for:

J(θ) = Eτ∼πθ
[R(τ)]

In English: J(θ) is the expected return of trajectories (R(τ)) explored (τ ∼ πθ) by
the agent. Remember that θ represents the weights and biases of a neural network.

We cannot easily compute the gradient in this expectation form since πθ is nowhere
to be seen in the equation. Through some clever algebra tricks we can change how
the expression looks and take the gradient. Let’s write the expectation in integral
form:
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J(θ) =

∫
R(τ)pθ(τ) dτ

The term pθ(τ) is the probability of encountering trajectory τ while the policy has
parameters θ. Now let’s introduce the gradient and move it inside the integral:

∇θJ(θ) = ∇θ

∫
R(τ)pθ(τ) dτ

∇θJ(θ) =

∫
∇θR(τ)pθ(τ) dτ

Now what do we do? Here is where something called the “REINFORCE” trick
comes into play I will break it down very clearly below and then explain how it
works:

∇θJ(θ) =

∫
∇θR(τ)pθ(τ) dτ

=

∫
∇θpθ(τ)R(τ) dτ

=

∫
pθ(τ)

pθ(τ)
∇θpθ(τ)R(τ) dτ

=

∫
pθ(τ)

1

pθ(τ)
∇θpθ(τ)R(τ) dτ

=

∫
pθ(τ)∇θlog(pθ(τ))R(τ) dτ

∇θJ(θ) = Eτ∼pθ(τ)[∇θlog(pθ(τ))R(τ)]

We first multiply by pθ(τ)
pθ(τ)

, which is equivalent to one and does not imbalance the
equation. We then use the fact that ∇log(f(x)) = 1

f(x)
∇f(x) from the chain rule

and replace some terms. We finally use the definition of expectation to transform
the integral back to an expectation with respect to τ ∼ pθ(τ).

Now we focus on the ∇θlog(pθ(τ)), expanding, cancelling, then contracting to
arrive at our final result. It is important to understand what exactly pθ(τ) exactly
is. In English, it is the probability of encountering trajectory τ while operating
under policy πθ. It can be written out in long form as such:

pθ(τ) = p(s0)
T−1∏
t=0

πθ(at|st)p(st+1|st, at)
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We take the probability of being in state s0 from the trajectory to start the product
chain. We multiply it by πθ(a0|s0), the probability that the agent took action a0
from the trajectory given being in state s0. We also consider the probability of
transitioning from state s0 → s1 given that action a0 was taken. This is decided by
the environment, not the agent. We then keep multiplying these terms together
from t = 0 to T − 1. We now introduce the logarithm, which transforms the
equation a bit:

log(pθ(τ)) = log(p(s0)) +
T−1∑
t=0

log(πθ(at|st)) + log(p(st+1|st, at))

The properties of logarithms (log(ab) = log(a) + log(b)) transform this product into
an easy-to-derive sum. We now apply the gradient:

∇θlog(pθ(τ)) = ∇θ

(
log(p(s0)) +

T−1∑
t=0

log(πθ(at|st)) + log(p(st+1|st, at))
)

= ∇θlog(p(s0)) +
T−1∑
t=0

∇θlog(πθ(at|st)) +∇θlog(p(st+1|st, at))

=
T−1∑
t=0

∇θlog(πθ(at|st))

When we take the gradient with respect to θ (∇θ), we can eliminate any terms that
do not concern θ. This is how we were able to get rid of p(s0) and
log(p(st+1|st, at)). Getting rid of this second term is especially crucial, because it
makes our method model-free. We do not need to consider or try to model
environment dynamics at all with this approach! Now we plug ∇θlog(pθ(τ)) back
into the larger equation, and expand R(τ):

∇θJ(θ) = Eτ∼pθ(τ)[∇θlog(pθ(τ))R(τ)]

= Eτ∼pθ(τ)

[T−1∑
t=0

∇θlog(πθ(at|st))R(τ)

]

= Eτ∼pθ(τ)

[T−1∑
t=0

∇θlog(πθ(at|st))
T∑

t′=0

γt′r(st′ , at′)

]
And now, we create a Monte-Carlo approximation to the expectation by sampling
trajectories, and we arrive at the PG gradient we introduced earlier! Note the
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change from T − 1 to T , we do this for ease of understanding and since we are
already approximating the true gradient the impact is minimal.

∇θJ(θ) ≈
1

N

N∑
i=0

T∑
t=0

[
∇θlogπθ(a

i
t|sit)

T∑
t′=0

γt′r(sit′ , a
i
t′)

]

Synthesis Questions:

1. What is infinite-horizon discounted reward, and why is it important?

2. Answer the following questions about γ, a term within the formulation for infinite-
horizon discounted return.

• What is γ?
• What would a low value of γ do to rewards in the far future?
• Give one scenario where a low γ is good, and one where a high γ is good.
• Why cant γ be ≥ 1?

3. What is J(θ), and what do we want to do with it?

4. How does policy gradient improve the performance of the policy? In other words, how
do we get the probabilities of good actions given a specific state to go up?

5. Explain how the following “tricks” reduce the variance of policy gradient and make it
more stable.

• Return-to-Go
• Baseline functions
• Natural policy gradient/constrained optimization

7 Deep Q-Learning
7.1 Q-Functions and Bellman Equations
Q-Learning will introduce us to our first off-policy RL algorithm, and is the first
step into a whole other realm of RL algorithms. Many of these algorithms use
language or ideas captured within Q-Learning, which is why we discuss it.

The main idea behind Q-Learning is that we want to create a “Quality Function”
that can evaluate state-action pairs. Given some state and an action in that state,
we should get a number that tells us how good things will play out in the future if
we were to take this action. In other words, what is the expected return from time
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t and onward, if we take action at in state st, and then follow policy πθ from then
on out? This function is usually approximated by a neural network. We will note
this by parameterizing the Q-function with ϕ to represent the weights and biases of
the network. We can write this all out as such below:

Qπ
ϕ(s, a) = Eτ∼πθ

[ T∑
t′=t

γt′r(st′ , at′)|st = s, at = a

]
Note that the state-action pair (st, at) is given to the equation, but all other
state-action pairs come about as a consequence of following policy πθ afterwards.

Figure 6: A visualization of what the Q-function takes into account. It averages the rewards from
time t and forward across considers many paths that policy πθ could theoretically take. The

output of a Q-function is called a Q-value. It signifies the “quality” of the given state-action pair.

This might seem somewhat arbitrary, but it is an intuitive way to think about
navigating an environment. Think about yourself. You evaluate what actions you
have available to you by considering their impact on future events. You have the
option to stay at home all day, and in the short term it would be rewarding.
However, in the long term, you understand it is better to exercise and touch grass.
your brain in a way has a well trained “Quality Function” embedded deep within
it!

Now we can expand this intuition and equation into an update rule. With some
algebraic manipulation, we find that the Q-function actually has a recursive
property.
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Qπ
ϕ(st, at) = Eτ∼πθ

[ T∑
t′=t

γt′r(st′ , at′)|st, at
]

= r(st, at) + Eτ∼πθ

[ T∑
t′=t+1

γt′r(st′ , at′)|st+1 ∼ p(·|st, at), at+1 ∼ πθ(st)

]
= r(st, at) +Qπ

ϕ(st+1, at+1)

The “st+1 ∼ p(·|st, at), at+1 ∼ πθ(st)” part of the equation just shows where st+1

and at+1 come from: transition dynamics and the policy πθ respectively.

The recursive nature of the Q-function means it can be called a Bellman
equation. This being true is a necessary condition for optimal behavior. If we got
our hands on a “perfect” Q-function like this, where Qπ

ϕ(st, at) is really always equal
to r(st, at) +Qπ

ϕ(st+1, at+1), then we call it Q∗ and can simply query it for the best
action in any state. We would be able to act optimally always. However, this is not
what we have our hands on. We have a neural network that needs to be trained to
have similar behavior to the perfect Q∗. How can we accomplish this? It seems
impossible due to the recursive nature of the equation. However, we can employ a
trick here.

We would like it to be true that Qπ
ϕ(st, at) = r(st, at) +Qπ

ϕ(st+1, at+1). This is an
equation, so both sides are equal and their difference should be 0. So if we make our
“surrogate goal” to be minimizing the difference between the two sides, then the
Q-function we learn will obey this recursive property (to some degree) implicitly!
We define this difference as “surprise”, or TD-error, and denote it as δ. We also
square the difference to ensure it is always positive.

δ =

(
Qπ

ϕ(st, at)− (r(st, at) +Qπ
ϕ(st+1, at+1))

)2

Again: minimizing δ will give us the ideal Q-function and allow the agent to
navigate the environment while maximizing returns.

argmin
ϕ

Eτ∼π[δ]

argmin
ϕ

Eτ∼π

[(
Qπ

ϕ(st, at)− (r(st, at) +Qπ
ϕ(st+1, at+1))

)2]
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This is naturally off-policy, as the policy that τ comes from and the policy that Qπ

operates off of do not need to be the same.

8 Making Q-Learning Work
8.1 Replay Buffer and Memory
One of the main benefits of an off-policy algorithm are that we can use data from
old trajectories many times instead of once. Since the policy that τ comes from in
the optimization objective does not need to be the same as the actor’s policy, we
can replace τ ∼ π with τ ∼ D, where D is just a database of stored trajectories.
This is usually implemented as a replay buffer. Essentially, the last 100 to 1000
trajectories are stored in a circular queue, and you sample N datapoints from this
buffer to train on. You update the Q-function, and then run the agent in the
environment to collect more trajectories for your queue. Very old trajectories are
eventually thrown out as they probably amount to nothing better than a random
search. However, as the model gets better, the data within D gets richer and more
interesting. Perhaps the agent progresses farther in whatever level it is trying to
beat and encounters new areas it didn’t see before. This “memory” the agent has
at it’s disposal allows it to learn faster and have greater sample efficiency.

argmin
ϕ

Eτ∼D

[(
Qπ

ϕ(st, at)− (r(st, at) +Qπ
ϕ(st+1, at+1))

)2]
8.2 Optimization Stability and Polyak Averaging
By now you may still have a little skepticism on how we can improve Qπ

ϕ if it is
being compared not to a ground truth, but mainly to itself. This is an issue that
Q-Learning has, it is very unstable since the optimization objective changes
constantly. The Q-function learning from itself is like the “blind leading the blind”
in a way. This is where we make small adjustments to the objective. We introduce
Qπ

ϕ̂
, which is a second Q-function we use to improve the stability of our

optimization loop:

argmin
ϕ

Eτ∼D

[(
Qπ

ϕ(st, at)− (r(st, at) +Qπ
ϕ̂
(st+1, at+1))

)2]
It takes the place of the “target” Q-function, the one that processes (st+1, at+1).
Having a second Q-function here makes the optimization more stable, as we can
control how fast it is updated using polyak averaging. Polyak averaging is a way
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to slow how fast the target Q-function changes its weights. A slower change means
a more stable optimization loop.

ϕ̂← (1− κ)ϕ+ κϕ̂

κ controls the speed of the update, with higher numbers slowing the speed at which
ϕ̂ approaches the same weights and biases as ϕ.

8.3 Explore vs. Exploit and epsilon-Greedy Search
One of the final small concepts to discuss is not actually unique to Q-Learning or
even RL, but benefits them greatly and is worth talking about. In RL, we can have
explore vs. exploit problems crop up. We want to act optimally as much as
possible, but we will never truly know if we are acting optimally unless we search
through every possible route. However if we do this, then many of our actions
would be wasted on sub-optimal routes that turn out to be duds that do not
improve our return. We need to strike a balance. We should explore enough so that
we are confident that we have found the best path, and then immediately switch to
following that path.

If you just always follow the policy as you train an agent, then the agent may never
find the most optimal route. This is because the agent pigeonholes itself into
something it perceives as optimal, but only because it does not know any better.
For example, say that we ask an agent to solve a maze. The fastest way to actually
get to the goal would be to go around the outside of the maze to reach it. However,
our reward schema penalizes moving away from the goal and rewards going towards
it. As such, the agent will never learn the behavior of backing up and taking
temporary low reward for future high rewards and a speedy victory. It will always
move forward into the maze since that is what gives the most reward upfront.

We can combat this issue with an ϵ-greedy search strategy. It is actually quite
simple. With probability ϵ, take a random action instead of the one the policy says
to take. Start this probability quite high, and slowly reduce it to 0 over time. This
makes the first part of the agent’s training cycle random exploration. It is through
this random exploration that the agent may stumble upon efficient solutions, such
as going around the maze.

Implementing ϵ-greedy can allow an agent to randomly encounter paths it would
not have encountered if it just followed what it thought was the “best way
forward”. Somewhat counterintuitively, one powerful way to improve performance
in RL is to actually throw out all of the fancy mathematical formulation for a bit
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and just throw some dice on which paths to take. These paths can be much better
in the long run for the agent. Perhaps there is a life lesson in here somewhere?

Synthesis Questions:

1. What does the Q-function accept, and what does it return? Why would having this
be useful for an agent navigating an environment?

2. A similar function to the Q-function exists, called the Value function. It is written
as:

V π(s) = Eπθ

[ T∑
t′=t

γt′r(st′ , at′)|st = s

]
Do the following:

• Compare and contrast this function to the Q-function. What purpose do you
think it could serve?

• Prove that this is a Bellman equation.

3. What is “surprise” or TD-error? Why does minimizing it allow us to learn a good
Q-function?

4. Why is Q-learning off-policy, and why is this a good thing?

5. How does a replay buffer improve sample efficiency?

6. Why do we use a target network and polyak averaging when training Q-learning algo-
rithms?

7. Write in your own words the explore vs. exploit problem, and explain how ϵ-greedy
search mitigates this issue.

9 When to Use Reinforcement Learning
Deep reinforcement learning is relatively situational, and can be very unstable to
train. It unfortunately takes a lot of compute, hyperparameter tuning, and general
trial-and-error to get something to behave “properly”. RL algorithms, like all AI
applications, are error prone. In classification or regression tasks this is to be
expected and can be mitigated, but if an RL algorithm is deployed in a robot then
a failure can lead to disastrous consequences.

Regardless, RL by design more closely mimics human behavior and can perhaps be
used in the future along with guardrails to accomplish very complex tasks. It is
also the method of choice when the problem you are trying to solve is “game-like”
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in nature. For example, playing a videogame. It is actually easier to use RL in this
case than it would be to try and use other techniques. The primary avenue to
explore RL further is research at the moment, but personal projects are also very
possible (and impressive!). It is difficult but not impossible to incorporate RL into
student projects with just the techniques in this article. A deeper understanding of
RL requires a lot of math and reading, but you can do it!

10 Conclusion (RL)
This section covered basic RL concepts, introducing common notation and 4 major
algorithms (Behavior Cloning, DAgger, Policy Gradient, Q-Learning). We also
went over the drawbacks of some of these algorithms both intuitively and in depth.
We also covered miscellaneous RL topics like markov decision processes (MDPs),
on vs. off policy algorithms, and explore vs. exploit. RL models are capable of
superhuman-like performance in game-style tasks if trained properly, which can be
quite shocking to many. Understanding the basics of these algorithms can
demystify their power and quell fears about their capabilities.
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Thank You for Reading :)
- The Interactive Intelligence Team
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