
Interactive Intelligence (I2) Grimoire

LANGUAGE MODELING UNIT

G
au

ra
ng

P
en

dh
ar

ka
r

Varun AnanthI2 Leadersh
ip

C
arter

Sw
artout

Arya Sanjay Misha Nivota

v1.0

1

The I2 Grimoire: LANGUAGE MODELING
This is the LANGUAGE MODELING unit of the I2 Grimoire book. Find the full book and other

units on our website: https://grimoire.uw-i2.org.

We are Interactive Intelligence, an organization of interdisciplinary thinkers that seek to probe
intelligence through the intersection of AI, neuroscience, and related fields. This book serves as a
launchpad for the basic theory that underlies major AI systems and covers five large (intersecting)

spheres: Machine Learning, Deep Learning, Computer Vision, Reinforcement Learning, and
Language Modeling. While by no means a thorough overview of any one of these fields, this book

serves as a starting point that will paint a large picture in your mind about the five
aforementioned topics. This book is written in layman’s english, and introduces some complex
(but core) math while explaining as much intuition behind it as possible. Regardless of your
background, there is something interesting you will learn in these pages. Feel free to explore

sections that interest you, backtracking if you encounter unfamiliar concepts.

This book is a culmination of many months of work by very talented students from the University
of Washington. It was entirely created by I2 members, and we hope that you enjoy what we have

written on these pages and leave better equipped to navigate this world we share with AI
algorithms.

Additional Information
This book was written to pair with the Interactive Intelligence intro to NeuroAI course, which

lives here: Interactive Intelligence Intro to NeuroAI Course Website. There are questions
associated with some sections, which serve as optional exercises for you to test your

understanding. If you have questions or comments on the information in this book, please contact
varunananth1@gmail.com

2

https://grimoire.uw-i2.org
https://course.uw-i2.org/
mailto:varunananth1@gmail.com

Contents
1 Introduction to Language Modeling 5

1.1 How Are Language Models Trained? . 5
1.2 Important Concepts in Language modeling . 6

2 Foundational Concepts 6
2.1 Tokenization: The First Step . 6
2.2 Embeddings: Representing Tokens Numerically . 7
2.3 Sequence Modeling: The Core Objective . 10

3 Core Architectures of Language Models 12
3.1 Recurrent Neural Networks (RNNs) . 12
3.2 Transformers: A Paradigm Shift . 13

4 NLP Tasks Enabled by Language Models 17

5 Advanced Topics in Language Modeling 18
5.1 Challenges in Large Language Models (LLMs) . 18
5.2 Reinforcement Learning with Human Feedback (RLHF) 21

6 When to Use Language Models 23

7 Conclusion (LM) 23

3

LANGUAGE MODELING

4

1 Introduction to Language Modeling
Language Modeling (LM) is about building systems that can understand, generate,
or transform human language. At its simplest, a language model predicts the next
word in a sequence based on the words that came before it. This ability forms the
foundation of many applications in natural language processing (NLP), such
as chatbots (e.g., ChatGPT), machine translation, text summarization, and search
engines.

Let’s consider an example:

“The quick brown fox jumps ___.”

Given this sentence, a language model would likely predict the word “over” as the
next word, drawing on patterns it has learned from analyzing text. By recognizing
and using patterns in language, these models can:

• Complete sentences.

• Understand context.

• Generate coherent responses or paragraphs.

These are examples of text-generation tasks, where language models predict or
create text based on input. Language models also support other types of NLP
tasks, such as classification or summarization.

Language models work by estimating the probability of a sequence of words.
Formally, the model breaks this problem into smaller steps, predicting one word at
a time based on the words before it:

P (w1, w2, . . . , wn) = P (w1)P (w2|w1)P (w3|w1, w2) . . . P (wn|w1, w2, . . . , wn−1)

This equation may look complex, but it simply means that the probability of an
entire sequence is determined by multiplying the probabilities of each word, one
after another, given their context.

1.1 How Are Language Models Trained?
To train a language model, we show it large amounts of text and teach it to
minimize its prediction errors. Specifically, we compare the words it predicts with
the actual next words in the text and adjust the model to get better over time. The
measure of prediction error is called cross-entropy loss:

5

Loss = − 1

N

N∑
i=1

Ti∑
j=1

logP (w
(i)
j |w(i)

1 , . . . , w
(i)
j−1)

While this might seem technical, the idea is simple: the closer the model’s
predictions are to the actual text, the smaller this loss becomes. Training involves
minimizing this loss so the model becomes better at predicting language patterns.

1.2 Important Concepts in Language modeling
Below are some of the essentials of language modeling:

• Core Concepts like tokenization, embeddings, and sequence modeling.

• Architectures such as Recurrent Neural Networks (RNNs), Long Short-Term
Memory networks (LSTMs), and Transformers.

• Applications in areas like chatbots, translation, and sentiment analysis.

• Challenges like managing bias, hallucinations, and the scale of large models.
We want to understand the theoretical foundations of language models, how they’re
built and trained, and their real-world impact.

Synthesis Questions:

1. Why is it important for language models to predict the likelihood of sequences accu-
rately? Give a practical example where this capability is crucial.

2. How do language models like GPT differ in their approach to understanding language
compared to traditional rule-based systems?

2 Foundational Concepts
2.1 Tokenization: The First Step
Tokenization breaks raw text into smaller units called tokens, which are the
building blocks for language models. Tokenization is essential because language
models cannot directly process text; they operate on numerical data. The
granularity of tokens varies:

• Word-level Tokenization: Splits text into individual words or phrases.

• Character-level Tokenization: Breaks text into single characters, useful for
languages with complex morphologies.

6

• Subword Tokenization: Balances granularity and vocabulary efficiency,
often employed in modern models like BERT and GPT.

Examples of Tokenization:

• Word-level:

Sentence: "Arya is amazing!"
Tokens: ["Arya", "is", "amazing", "!"]

• Character-level:

Sentence: "Arya"
Tokens: ["A", "r", "y", "a"]

• Subword-level:

Sentence: "unbelievable"
Tokens: ["un", "believable"]

Algorithms like Byte Pair Encoding (BPE) and WordPiece generate subword
tokens, enabling the model to handle unseen words by breaking them into
meaningful subunits. For example, ”transformational” can be tokenized as
[”transform”, ”ational”], capturing semantic and morphological relationships.

Synthesis Questions:

1. Compare and contrast word-level, character-level, and subword tokenization. In which
scenarios might each be most appropriate?

2. What are the advantages of using subword tokenization for handling out-of-vocabulary
words? Provide an example.

3. Given a language with agglutinative morphology (e.g., Turkish), which tokenization
approach would likely work best and why?

2.2 Embeddings: Representing Tokens Numerically
After tokenization, tokens are represented as discrete symbols, which must be
converted into numerical vectors for processing by language models. Embeddings

7

achieve this transformation by mapping tokens to dense vector spaces where
semantic and syntactic relationships are preserved. These embeddings play a crucial
role in enabling models to understand and process natural language effectively.

Embeddings are typically dense vectors, meaning they are compact numerical
representations with most elements being non-zero. This property allows
embeddings to efficiently capture semantic and syntactic relationships between
tokens compared to sparse vectors, which contain many zeros.

Why Embeddings Matter: Embeddings play a crucial role in bridging the gap
between human language and machine computation, enabling efficient downstream
processing.

Key Properties of Embeddings:

• Semantic Similarity: Tokens with similar meanings have similar
embeddings, enabling the model to capture linguistic relationships. Cosine
similarity is preferred as it focuses on the angular distance between vectors,
ignoring magnitude differences that may arise due to varying token frequencies.

• Contextual Adaptability: Contextual embeddings dynamically adjust
based on sentence context, allowing the model to handle polysemous words
(e.g., “bank” can refer to a financial institution or a riverbank).

8

Mathematical Representation:

Embedding(token) = e ∈ Rd

where d is the dimensionality of the embedding space. Each token is represented as
a point in this d-dimensional space, capturing its relationships with other tokens.

Types of Embeddings:

• Pre-trained Static Embeddings:

– Word2Vec: Learns embeddings by maximizing the cosine similarity
between words appearing in similar contexts.

– GloVe (Global Vectors): Embeds words by factorizing a co-occurrence
matrix to capture statistical properties of word distributions.

– FastText: Enhances embeddings by incorporating subword information,
improving robustness for rare and out-of-vocabulary words.

• Contextual Embeddings: Advanced models like BERT (Bidirectional
Encoder Representations from Transformers) and GPT (Generative
Pre-trained Transformers) generate embeddings that depend on the
surrounding context of a token. For example:

Sentence: "The bank is on the riverbank."

The embedding for the word “bank” differs in the financial and river contexts,
reflecting its contextual meaning.

• Embedding Arithmetic: A unique property of embeddings is their ability
to encode semantic relationships through arithmetic operations. For instance:

Embedding(king)−Embedding(man)+Embedding(woman) ≈ Embedding(queen)

This illustrates how embeddings capture relationships between words in dense
vector spaces.

9

Synthesis Questions:

1. Explain the significance of dense vector spaces in embeddings. Why is cosine similarity
often used to measure relationships between embeddings?

2. How do contextual embeddings differ from static embeddings? Illustrate with an ex-
ample involving polysemy.

3. How would you adapt static embeddings for a multilingual task? What challenges
arise?

4. Suppose you need to train embeddings on a highly domain-specific dataset (e.g., med-
ical texts). What modifications or strategies might you employ to make embeddings
effective in this context?

2.3 Sequence Modeling: The Core Objective
At the heart of language modeling lies the task of sequence prediction, which
involves estimating the probability of a sequence of tokens. Meanwhile,
autoregressive models, such as GPT, predict the next token in a sequence by
conditioning on all previous tokens. This process is iterative, generating one token
at a time, which allows these models to produce coherent sequences of text.
Sequence prediction can be mathematically expressed as:

P (x1, x2, . . . , xT) =
T∏
t=1

P (xt|x<t)

Here:

• xt represents the current token at time step t.

• x<t denotes all tokens preceding xt (i.e., the context or history).

Let us break down the sequence P (”The quick brown fox jumps”) step by step
using the chain rule of probability. Here, the sequence contains five tokens: ”The”,
”quick”, ”brown”, ”fox”, and ”jumps”. The joint probability of the sequence is
decomposed as:

P (”The quick brown fox jumps”) = P (”The”) · P (”quick” | ”The”)
· P (”brown” | ”The quick”)
· P (”fox” | ”The quick brown”)
· P (”jumps” | ”The quick brown fox”)

10

Each term in this product represents the conditional probability of a token given
the tokens that precede it in the sequence.

Step-by-Step Calculation (Hypothetical Probabilities):
• P (”The”) = 0.4

• P (”quick” | ”The”) = 0.3

• P (”brown” | ”The quick”) = 0.2

• P (”fox” | ”The quick brown”) = 0.5

• P (”jumps” | ”The quick brown fox”) = 0.6

Thus, the joint probability of the entire sequence is calculated as:

P (”The quick brown fox jumps”) = 0.4 · 0.3 · 0.2 · 0.5 · 0.6 = 0.0072

This step-by-step breakdown illustrates how language models leverage the chain
rule of probability to predict tokens sequentially while accounting for prior context.
Example with Numerical Probabilities: Consider a toy vocabulary with three
words: ”cat”, ”dog”, and ”bird”. Given ht, the model computes:

P (”cat”|x<t) =
ez”cat”∑

w∈{”cat”,”dog”,”bird”} e
zw

where z”cat” = W · ht[”cat”]. This ensures probabilistic coherence for output
predictions. By chaining these probabilities, the model constructs meaningful
sequence-level predictions.

Training Objective: Negative Log-Likelihood (NLL) Loss Language models
are typically trained using the negative log-likelihood (NLL) loss function,
defined as:

L = −
T∑
t=1

logP (xt|x<t)

The NLL loss penalizes the model when it assigns low probabilities to the actual
tokens in a sequence. Minimizing this loss ensures the model learns to generate
sequences with high probability for real-world language patterns.
Key Insights:

• The sequence prediction task assumes a left-to-right (or autoregressive)
approach for models like GPT or a bidirectional approach for models like
BERT.

11

• Accurate modeling of P (xt|x<t) requires capturing long-range dependencies,
grammatical structure, and semantic coherence within the sequence.

Illustrative Example: Consider the sentence:

"A journey of a thousand miles begins with a single step."

During training, the model learns to predict each word sequentially:

P (”A”), P (”journey”|”A”), P (”of”|”A journey”), . . .

The cumulative product of these probabilities represents the likelihood of the entire
sentence. Sequence modeling is the foundation for understanding how language
models generate coherent and contextually relevant outputs.

Synthesis Questions:

1. Derive the negative log-likelihood loss formula from the sequence probability expres-
sion.

2. How does the choice of P (xt|x<t) influence the quality of a language model’s output?
Provide a concrete example.

3. How might bidirectional modeling (as in BERT) handle P (xt|x<t) differently from
autoregressive models like GPT? What are the trade-offs?

3 Core Architectures of Language Models
3.1 Recurrent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs) are designed to process sequential data
by maintaining a hidden state that evolves over time. The hidden state ht at time
step t encodes information from both the current input token xt and the previous
hidden state ht−1. This can be expressed as:

ht = f(Wxxt +Whht−1 + b)

Here:

• Wx and Wh are weight matrices for the input and hidden state, respectively.

• b is a bias term.

• f is a non-linear activation function, often tanh or ReLU .

12

RNNs capture sequential dependencies effectively for short sequences. However,
they struggle with long-term dependencies due to the vanishing gradient
problem, where gradients become too small to update weights during
backpropagation.

Extensions to RNNs: To address the limitations of vanilla RNNs, two popular
architectures were developed:

• Long Short-Term Memory (LSTM): LSTMs introduce memory cells and
gating mechanisms to better capture long-term dependencies. The gates
include:

– Forget Gate: Decides which information to discard.
– Input Gate: Determines what new information to store.
– Output Gate: Controls what information to output.

The update equations for LSTMs enable the model to selectively retain
relevant information, mitigating vanishing gradients.

• Gated Recurrent Units (GRU): GRUs are a simplified variant of LSTMs
that merge the forget and input gates into a single update gate, reducing the
number of parameters. GRUs are computationally efficient while maintaining
performance on many tasks.

Illustrative Example: For a sequence of tokens:

["The", "sun", "is", "shining"]

An RNN processes one token at a time, updating its hidden state to encode
cumulative context. By the end of the sequence, the hidden state represents the
semantic meaning of the entire input.
While RNNs and their variants were widely used for language tasks, they have
largely been replaced by architectures like Transformers, which overcome the
limitations of sequential processing.

3.2 Transformers: A Paradigm Shift
Transformers revolutionized language modeling by eliminating the need for
sequential processing, enabling parallel computation and dramatically improving
efficiency. At the core of the Transformer architecture is the self-attention
mechanism, which allows the model to weigh the importance of different tokens in

13

a sequence regardless of their position.

Self-Attention Mechanism: Self-attention captures dependencies across tokens
in the sequence, allowing the model to weigh their relevance irrespective of their
position. This is critical for capturing relationships such as subject-object
dependencies in a sentence.
The generic attention operation is defined as:

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V

Here:

• Q (Query), K (Key), and V (Value) are projections of the input sequence,
computed using learned weight matrices.

• dk is the dimensionality of the Key vectors, and the term 1√
dk

scales the dot
product to prevent large values from dominating the softmax.

• The output is a weighted sum of the Value vectors, where weights are
determined by the similarity of Query and Key vectors.

Intuitive Explanation of Q, K, and V :
To understand the roles of Q, K, and V in self-attention:

• Query (Q): Represents the token that is ”asking the question,” focusing on
specific relationships or dependencies.

• Key (K): Represents all tokens in the sequence and acts as a ”key” to
determine the relevance of other tokens to the query.

• Value (V): Contains the actual content or information of each token, which
is weighted by the relevance (computed from Q and K) and aggregated to
produce the final output.

Key Features of Transformers:

• Parallelism: Unlike RNNs, which process tokens sequentially, Transformers
compute attention for all tokens simultaneously, significantly speeding up
training on large datasets.

• Positional Encodings: Since Transformers do not have inherent sequential
processing, they use positional encodings to inject information about the order
of tokens. Without positional encodings, Transformers would treat sequences
as bags of tokens, losing critical information about token order and sequence

14

structure. These encodings are added to the token embeddings and are
typically derived from sinusoidal functions or learned directly:

PE(pos,2i) = sin
(pos

100002i/d

)
, PE(pos,2i+1) = cos

(pos

100002i/d

)
where pos is the position, i is the dimension index, and d is the embedding size.

Multi-Head Attention: To capture relationships across different subspaces,
Transformers use multiple attention heads:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O

Each head performs self-attention independently, and the results are concatenated
and linearly transformed.

Decomposing Multi-Head Attention: Each attention head computes attention
scores independently, allowing the model to focus on different aspects of the input
sequence. For a single head, the computation is as follows:

headi = Attention(QWQ
i , KWK

i , V W V
i)

where:

• WQ
i ,WK

i ,W V
i are learned weight matrices specific to head i.

• Q,K, V are query, key, and value matrices derived from the input embeddings.

• Attention(Q,K, V) = softmax
(

QK⊤
√
dk

)
V , as explained earlier.

After computing the attention for all heads, the outputs are concatenated and
linearly transformed:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O

where WO is a learned projection matrix. This design allows Transformers to
capture multiple relational patterns simultaneously.

15

Figure 1: Multi-Head Attention Mechanism: Each head captures unique relationships and
combines them for comprehensive context.

Applications and Impact: The introduction of Transformers has led to
breakthroughs in language modeling, powering models like BERT and GPT. These
models have achieved state-of-the-art performance on a wide range of NLP tasks,
from machine translation to question answering, establishing Transformers as the
foundation of modern NLP.

Example: Consider the sentence:
"The cat sat on the mat."

Using self-attention, the Transformer can determine that ”cat” is most relevant to
”sat” and ”mat,” while also capturing the structural relationships between tokens.

16

This capability enables deep contextual understanding across an entire sequence.

Synthesis Questions:

1. Why do RNNs struggle with long-term dependencies, and how do LSTMs and GRUs
address this issue?

2. Mathematically describe the gating mechanism in LSTMs or GRUs and explain its
significance.

3. How does self-attention enable Transformers to capture relationships across the entire
sequence? Use the attention formula in your explanation.

4. Explain the role of positional encodings in Transformers. What issues would arise
without them?

4 NLP Tasks Enabled by Language Models
Language models empower a diverse array of natural language processing (NLP)
tasks, leveraging their ability to understand and generate text. Below are some key
applications:

• Text Generation: Create coherent and contextually relevant text by
predicting tokens one step at a time.

• Machine Translation: Convert text from one language to another using
sequence-to-sequence models, e.g., translating ”Hello, world!” to ”Bonjour, le
monde!”.

• Sentiment Analysis: Analyze the sentiment of a sentence or document,
categorizing it as positive, negative, or neutral. For instance:

Input: "The movie was fantastic!"
Output: Positive Sentiment

• Summarization: Generate concise and informative summaries of longer
texts, enabling efficient content consumption. For example:

Input: A detailed news article.
Output: "Key highlights of today's global summit..."

17

• Named Entity Recognition (NER): Identify and classify entities such as
names, dates, locations, and organizations within text. For example:

Input: "Elon Musk was born in South Africa."
Output: [Elon Musk: PERSON, South Africa: LOCATION]

• Question Answering (QA): Respond to user queries by extracting or
generating answers based on a given context. For instance:

Context: "The capital of France is Paris."
Question: "What is the capital of France?"
Answer: "Paris"

Example: Text Generation in Action

Input: "To be or not to be, that is the..."
Model Prediction: "question. Whether 'tis nobler in the mind..."

These examples showcase the versatility of language models in addressing a wide
spectrum of tasks, enabling advancements in areas like customer service, content
creation, and data analysis. Their ability to handle multiple tasks with minimal
task-specific customization demonstrates their adaptability and utility in real-world
applications.

Synthesis Questions:

1. Choose one NLP task (e.g., summarization or sentiment analysis) and explain how
language models are trained to perform this task.

2. How does text generation differ fundamentally from tasks like NER or sentiment anal-
ysis?

5 Advanced Topics in Language Modeling
5.1 Challenges in Large Language Models (LLMs)
The advent of large language models (LLMs) such as GPT-4 has unlocked
unprecedented capabilities in natural language understanding and generation.
However, these advancements come with significant societal and technical

18

challenges, which must be carefully mitigated to ensure responsible deployment.
These challenges are particularly critical in sensitive applications such as
healthcare, legal systems, and public discourse, where the stakes are high.
Challenges:

• Hallucination: LLMs sometimes generate information that appears plausible
but is factually incorrect or fabricated. This occurs because models optimize
for fluency and coherence rather than factual accuracy.
Example:

Prompt: "Who is the President of Mars?"
Model Output: "John Carter, elected in 2024."

The model confidently provides an answer to an implausible prompt,
demonstrating its tendency to prioritize coherence over factual correctness. In
critical contexts, such as medical or legal advice, hallucinations could lead to
harmful decisions or misinformation.

• Bias and Fairness: LLMs may inadvertently reinforce or amplify societal
biases embedded in their training data.

– Gender and Occupational Bias: For example:
Prompt: "The doctor is..."
Potential Output: "...he is a skilled surgeon."

This output reflects a gender bias learned from historical data.
– Cultural or Linguistic Biases: Cultural or linguistic biases may arise

when training data predominantly represents one demographic, leading to
underperformance on underrepresented groups. For example, a model
trained mostly on English data might struggle with accurately processing
idiomatic expressions or nuanced syntax in less-represented languages.

In sensitive domains like healthcare, biased outputs could worsen disparities
and harm underrepresented groups.

• Scaling Costs: The performance of LLMs often scales with size, but this
comes at a steep cost. Larger models demand exponentially more
computational resources, including memory, processing power, and energy.
This makes training and deployment prohibitively expensive for many
organizations, potentially creating accessibility barriers.

19

• Explainability and Interpretability: Understanding why LLMs produce
specific outputs remains a challenge, limiting trust in high-stakes applications
such as medical or legal systems. Without transparent decision-making
processes, users may hesitate to rely on LLMs for critical decisions.

• Ethical Considerations: Misuse of LLMs for generating disinformation,
spam, or harmful content raises ethical concerns that demand stringent
safeguards. The potential for misuse underscores the importance of
establishing rigorous monitoring systems and access restrictions to mitigate
harmful applications. For example, LLMs could be used to:

– Spread Disinformation: Automate the creation of false narratives or
propaganda.

– Commit Fraud: Generate phishing emails or impersonations.
– Produce Harmful Content: Generate hate speech or incite violence.

Monitoring systems should include real-time detection of misuse patterns and
proactive countermeasures such as content moderation pipelines. Access
restrictions can involve role-based permissions or licensing to prevent
unauthorized deployments.

Addressing these challenges is critical to ensuring that LLMs remain reliable,
ethical, and accessible.

Mitigation Strategies: Researchers and developers have proposed several
countermeasures to address these challenges and minimize their impact:

• Explainable AI: Techniques such as attention visualization, saliency maps,
and counterfactual reasoning help illuminate why a model generates specific
outputs, improving transparency and trust.

• Dataset Auditing: Regular audits of training datasets can uncover and
correct biases, ensuring balanced representation.

• Content Moderation Pipelines: Automated tools combined with human
review can filter out harmful or misleading outputs before they reach users.

• Fine-Tuning: Tailoring LLMs on domain-specific, curated datasets can
reduce hallucinations and improve accuracy in specialized tasks.

• Post-Processing Techniques: Verification layers, such as fact-checking
modules or ensemble approaches, can refine outputs and filter incorrect or
harmful information.

20

• Efficient Architectures: Exploring model compression techniques like
pruning and distillation can reduce computational costs without sacrificing
performance.

• Governance and Usage Guidelines: Clear ethical standards, supported by
audits and enforcement mechanisms, ensure responsible use of LLMs.

By addressing these challenges and adopting mitigation strategies, LLMs can be
deployed responsibly to maximize their benefits while minimizing harm. This
balance is essential for their continued advancement and integration into critical
societal functions.

5.2 Reinforcement Learning with Human Feedback (RLHF)
Reinforcement Learning with Human Feedback (RLHF) enhances language model
alignment with user expectations by incorporating human-provided evaluations into
the training process. This approach is particularly effective in fine-tuning large
models to ensure they generate useful, safe, and contextually appropriate outputs.
Why RLHF is Necessary: While raw next-token prediction enables a language
model to predict text sequences, it does not, on its own, result in a chatbot or an
aligned system capable of nuanced and context-aware responses. RLHF addresses
this gap by fine-tuning pre-trained models to better adhere to human expectations,
making them suitable for interactive applications like chatbots, where safe and
reliable behavior is critical.
Key Steps in RLHF:

• Collect Human Feedback: Human annotators evaluate and rank multiple
outputs generated by the base model for a given prompt.

• Train the Reward Model: The feedback trains a model to score outputs
based on alignment with human preferences.

• Fine-Tune the Base Model: Reinforcement learning algorithms like
Proximal Policy Optimization (PPO) optimize the base model to
produce outputs that maximize the reward signal.

Example: Ranking Outputs for a Controversial Prompt
Consider the prompt: ”What are the benefits and drawbacks of AI in the military?”
The model generates three outputs:

• Output 1: Balanced and nuanced, highlighting both advantages (e.g.,
precision, reduced casualties) and ethical concerns (e.g., autonomy,
accountability).

21

• Output 2: Overly dismissive, focusing only on the dangers of AI in the
military.

• Output 3: Optimistic but one-sided, emphasizing efficiency and precision
without addressing ethical challenges.

Annotator Rankings:
• Rank 1: Output 1 (balanced and nuanced).
• Rank 2: Output 2 (valid concern but lacks nuance).
• Rank 3: Output 3 (lacks ethical considerations).

The reward model uses these rankings to train the base model to prioritize nuanced
and balanced outputs over simplistic or biased responses.
This process ensures that language models respond appropriately to complex or
sensitive prompts, enhancing their reliability and trustworthiness in real-world
applications.

Benefits of RLHF:
• Improves Relevance: Outputs are more contextually accurate and

user-specific.
• Reduces Harmful Outputs: Penalizes toxic, biased, or harmful content.
• Aligns with Human Values: Reflects human values more closely through

iterative feedback.
RLHF is a critical tool for enhancing the usability and safety of large language
models, enabling them to deliver high-quality, aligned outputs in complex
real-world applications.

Synthesis Questions:

1. Explain why hallucination occurs in LLMs. Suggest one specific method to reduce
hallucination in model outputs.

2. Discuss the trade-offs between model size and computational cost. How might future
innovations reduce this tension?

3. Why is human feedback critical in RLHF? Discuss the challenges of designing an
effective reward model.

4. Compare RLHF to supervised fine-tuning. What are the advantages and limitations
of each approach?

22

6 When to Use Language Models
Language modeling has taken the world by storm, for those both in and out of the
“AI” space. Advances within LM have allowed for the advent of chatbots and a
whole new wave of AI tools and integrations. Understanding what goes on under
the hood of these models will allow you to place the proper amount of trust in their
results and cut through the sales hype. Use language models in situations where
their structure benefits them. There is no need to force a token-prediction model to
somehow solve a simple classification problem! Be wary of how data-hungry these
models can be, as well as training costs. plenty of pretrained models can be found
and used quite easily on sites like HuggingFace.

7 Conclusion (LM)
By delving into foundational concepts, core architectures, and advanced techniques
like Reinforcement Learning with Human Feedback (RLHF), this article has
provided a comprehensive overview of the current landscape of language modeling.
The future of NLP depends not only on technological improvements but also on
addressing ethical considerations and ensuring that models align with human
values and societal needs.

Language modeling has revolutionized the field of natural language processing,
enabling breakthroughs in tasks ranging from text classification and translation to
advanced conversational systems like chatbots. Central to this progress are
architectural innovations such as Transformers, which have redefined how models
process and generate human language. Alongside these advancements, challenges
such as hallucination, scalability, and bias have emerged, underscoring the need for
ongoing research and innovation.

As we continue to push the boundaries of what language models can achieve,
fostering a deeper understanding of their mechanisms and implications will be
crucial for building intelligent, responsible, and impactful NLP systems.

23

https://huggingface.co/models

Thank You for Reading :)
- The Interactive Intelligence Team

24

	Introduction to Language Modeling
	How Are Language Models Trained?
	Important Concepts in Language modeling

	Foundational Concepts
	Tokenization: The First Step
	Embeddings: Representing Tokens Numerically
	Sequence Modeling: The Core Objective

	Core Architectures of Language Models
	Recurrent Neural Networks (RNNs)
	Transformers: A Paradigm Shift

	NLP Tasks Enabled by Language Models
	Advanced Topics in Language Modeling
	Challenges in Large Language Models (LLMs)
	Reinforcement Learning with Human Feedback (RLHF)

	When to Use Language Models
	Conclusion (LM)

