
Interactive Intelligence (I2) Grimoire

DEEP LEARNING UNIT

G
au

ra
ng

P
en

dh
ar

ka
r

Varun AnanthI2 Leadersh
ip

C
arter

Sw
artout

Arya Sanjay Misha Nivota

v1.0

1

The I2 Grimoire: DEEP LEARNING
This is the DEEP LEARNING unit of the I2 Grimoire book. Find the full book and other units

on our website: https://grimoire.uw-i2.org.

We are Interactive Intelligence, an organization of interdisciplinary thinkers that seek to probe
intelligence through the intersection of AI, neuroscience, and related fields. This book serves as a
launchpad for the basic theory that underlies major AI systems and covers five large (intersecting)

spheres: Machine Learning, Deep Learning, Computer Vision, Reinforcement Learning, and
Language Modeling. While by no means a thorough overview of any one of these fields, this book

serves as a starting point that will paint a large picture in your mind about the five
aforementioned topics. This book is written in layman’s english, and introduces some complex
(but core) math while explaining as much intuition behind it as possible. Regardless of your
background, there is something interesting you will learn in these pages. Feel free to explore

sections that interest you, backtracking if you encounter unfamiliar concepts.

This book is a culmination of many months of work by very talented students from the University
of Washington. It was entirely created by I2 members, and we hope that you enjoy what we have

written on these pages and leave better equipped to navigate this world we share with AI
algorithms.

Additional Information
This book was written to pair with the Interactive Intelligence intro to NeuroAI course, which

lives here: Interactive Intelligence Intro to NeuroAI Course Website. There are questions
associated with some sections, which serve as optional exercises for you to test your

understanding. If you have questions or comments on the information in this book, please contact
varunananth1@gmail.com

2

https://grimoire.uw-i2.org
https://course.uw-i2.org/
mailto:varunananth1@gmail.com

Contents
1 Introduction to Neural Networks 5

1.1 Fundamental Structure . 5
1.2 Flow of Information . 7
1.3 The Perceptron and XOR . 9

2 Non-Linearity and Activation Functions 12
2.1 Introducing Nonlinearities . 12
2.2 Common Activation Functions . 14

3 Backpropagation 15
3.1 Loss Functions . 15
3.2 Derivatives and Gradients . 16
3.3 Gradient Flow . 19
3.4 Optimizers and Learning Rates . 21

4 Regularization 22
4.1 Dropout . 23
4.2 Batch Normalization . 24

5 When to Use Deep Learning/Neural Networks 25

6 Conclusion (DL) 26

3

DEEP LEARNING

4

1 Introduction to Neural Networks
1.1 Fundamental Structure
To understand deep learning (DL) on a deeper level, we must first look closer at
neural networks. They are ubiquitous in the space of DL and are the backbone or
an integral part of most modern DL model architectures. As such, understanding
what they are and where their “power” comes from is very important for both
reasoning about the capabilities of DL systems and designing your own.

Neural networks are learning algorithms loosely modeled after the brain. We will
expand on this connection further in the future, but for now here are the basics:
Neurons in the brain have lots of connections to other neurons, and can pass
information between each other using electrical potentials shot down a long section
of the cell called an axon. We heavily abstract this complex biological process by
representing it as a directed graph. We represent the neurons as nodes, and the
axons as edges.

The figure below shows how a graph like this might appear.

Figure 1: A visualization of neural networks

As you can see in Figure 1 above, there are different levels or layers of neurons
(pink, then yellow, and finally blue). That is a key characteristic of deep learning, a
learning algorithm that uses hierarchical layers to process information.

The primary layer of neurons is called the input layer - this is the layer where our
input is read in as a vector. So if, for example, our input was an image (which is
common as deep learning algorithms are often used for image classification), the
image would be reconfigured into a large single-column vector, where each entry
would represent a pixel in the image. The image would be, technically, entered into
the model as one long vector of pixels, and this vector would be entered into the

5

input layer of the model.

Figure 2: Visualization of how images are converted into vectors

Next are the hidden layers, which are yellow in the first image. There are usually
multiple hidden layers in deep learning models, depending on how much processing
the model must do before it can make a conclusion. The hidden layers are called
“hidden” because we often don’t understand what happens in here. Trying to
interpret the vectors that exist in these layers usually results in nonsense. The field
of explainable AI (XAI) has done lots of work here and there do exist tools to
probe the hidden layers to understand what the model is “thinking” (I use the term
thinking very loosely here). However, without these tools, the middle of the
network is considered a “black box” - a term you may have come across before.

Finally, the output layer. The neural network calculates a probability for each
possible outcome (for example, the input being an image of a dog) and fills out the
output layer with values (blue in Figure 1). The output layer shows the algorithm’s
conclusions for the probabilities of each possible outcome and using these
probabilities, the computer chooses an outcome. For classification neural networks,
all the probabilities in the outcome layer will always add up to 1. Since there is one
probability calculated for each outcome, the number of nodes in the output layer
will be the number of possible outcomes.

6

A small aside: Image inputs are the most common introduction to neural networks,
because the “Hello World” project of deep learning, or the most introductory deep
learning project, concerns image classification. It is important to note, however,
that we could instead input “features” of some object we wish to classify or regress
on. For example, we could provide the neural network with a vector consisting of
the first index being the number of legs of an animal, the second index the height,
the third a boolean indicating if it is a carnivore, etc. So, why don’t we?

A large reason neural networks are so useful is that they don’t require too much
“feature engineering” to get good results. Before the proliferation of the neural
network, people would write complex algorithms to extract some features from an
image. Where and how large the eyes of an animal are, an estimated number of
legs, its edge contours, and many more complex features. They would then feed
these vectors into a more traditional classification algorithm like a decision tree.
Neural networks are powerful enough that we can just cut up the raw
image and throw it in. No complex engineering required! This is why
images are used in beginner projects: to demonstrate the power of these networks.
However, this comes at the cost of efficiency. Neural networks often require orders
of magnitude more data to train on, and also a lot more compute. The reasons for
this will be explained in later sections.

1.2 Flow of Information
Now that you understand the different layers of a neural network, let’s see how the
values in the input layer travel through the edges to get to the output layer. For
ease of understanding, we are using a very simplified and weak version of a neural
network, which we will improve in later sections.

Weights: Zoom in one of the neurons in the input layer, and see how it connects
to the next hidden layer. You will see one arrow pointing to each of the yellow
neurons. Each of these arrows has a number attached to it. We call these numbers
“weights” because they determine how much information from the previous node
enters the next node. If you have a node with value a connected to node z with
weight w, Node z takes on the value of a times w. If w is very large or small, then
this will heavily influence the value in z. If w is closer to 0, then z will not be
influenced much by the value in a. You will also notice that one yellow neuron has
multiple arrows going into it. This means multiple different neurons in the previous
layer are sending their information over to this one. you just sum up the
contributions. Nothing fancy there!

7

Biases: Each neuron has a “bias” term that is added to its value. It can be
positive or negative and make the neuron more “sensitive” to input. For example, a
bias of +5 means that even if the values coming in from the previous layer to this
neuron are generally negative, it is counteracted with a positive bias. Vice versa for
negative biases.

Let’s write this all out:

Have the three pink neurons be a1, a2, a3. Only consider the top yellow neuron, and
call it z. The arrow connecting ax to z is called wx. The bias for the neuron z is b.

Figure 3: An illustration of weights and biases connecting the first layer of our neural network to
the first neuron of the second (hidden) layer.

z = (w1a1 + w2a2 + w3a3) + b

That is how information is propagated! This process is repeated for every neuron in
the hidden layers, all the way out to the output layer. However, this is not done
sequentially as shown above, but through the use of matrices.
The dot product of two vectors of the same dimension a, b is written as a · b, and
when expanded becomes:

n∑
i=1

aibi

8

Where a, b ∈ Rn. This is just saying that the vectors both have n elements in
them. We can rewrite the equation for z as:

z = w · a + b

We can add further subscripts to allow us to consider the whole hidden layer
instead of one yellow neuron. Have the four yellow neurons be z1, z2, z3, z4. wx

would then be a vector of the weights connecting the previous layer to zx. We also
add a subscript to the bias term to indicate which neuron in the hidden layer it
belongs to. We now have, for the entire hidden layer:

z1 = w1 · a + b1

z2 = w2 · a + b2

z3 = w3 · a + b3

z4 = w4 · a + b4

Using the properties of matrix multiplication (see here if you need a refresher), we
can simplify this further! We can define a weight matrix W as a 4 × 3 matrix (4
rows, 3 columns):

W =


w1

w2

w3

w4

 =


w1

1 w1
2 w1

3

w2
1 w2

2 w2
3

w3
1 w3

2 w3
3

w4
1 w4

2 w4
3


Making z a vector holding all zx values and b a vector holding all bx values, we can
write:

z = Wa + b
With the dimensions being: z ∈ R4×1, W ∈ R4×3, a ∈ R3×1, and b ∈ R4×1. Based
on the architecture of your neural network, these numbers will change in expected
ways.

1.3 The Perceptron and XOR
We just wrote out the equations that define how information flows between two
layers in a neural network. Well, if we stop here and don’t add any more layers, we
come up with what is a perceptron. Understanding the limitations of two linear
layers is crucial for appreciating the power of many nonlinear layers. Let us create
a perceptron that accepts 2 inputs and outputs one.

9

https://www.mathsisfun.com/algebra/matrix-multiplying.html

z = Wa + b
With the dimensions being: z ∈ R1×1, W ∈ R1×2, a ∈ R2×1, and b ∈ R1×1. Since
the dimensions are so small, we can just do away with the compact matrix form:

z = w1a1 + w2a2 + b

a1 and a2 become x and y since we are in the Cartesian plane.

z = w1x+ w2y + b

Subtract b:

z − b = w1x+ w2y

Since z and b are constant, we have essentially written the standard form of a line!
w1, w2, and b define the line. Solving for z tells you where the point (x, y) lies in
relation to the line. If z is positive, the point lies above the line. 0 for on the line,
and negative for below. Therefore, the classification boundary a perceptron
draws is linear.
What is this all for? Let’s consider a famous problem: The XOR Problem. We
construct a “dataset” from the definition of the XOR (⊕) boolean function. The
truth table for it can be seen below:

X Y X ⊕ Y
0 0 0
0 1 1
1 0 1
1 1 0

We can consider X and Y as Cartesian coordinates and X ⊕ Y as the “class” of the
point. If this is plotted, you will quickly notice that there is no way to draw a line
that cleanly separates the classes. In other words, the XOR classification problem is
not linearly separable.

10

Figure 4: Illustration of the XOR function, and how you cannot draw a single line that separates
the classes (white and black dots).

XOR is a simple boolean operation, as we move to complex problems like animal
classification and speech recognition, how can perceptrons hope to solve them, even
if we blow up the number of weights and nodes? You may say that we can add
more layers, which can be represented as:

z1 = W 1a + b1

z2 = W 2z1 + b2

z3 = W 3z2 + b3

With superscripts just denoting what layer we are processing. Collapsing this set of
equations through substitution:

z3 = W 3(W 2(W 1a + b1) + b2) + b3

Distribute:

z3 = W 3W 2W 1a +W 3W 2b1 +W 3b2 + b3

Here comes the issue with more layers. The term W 3W 2W 1a can simply be
collapsed into a single transformation Wa! The decision boundary is still linear,
and can therefore never “solve” a problem that is not linearly separable. The terms
W 3W 2b1 +W 3b2 + b3 do not change this fact. Applying multiple linear
transformations to a vector is the same as applying the product of those
transformations all at once. The associative property of matrix multiplication
totally allows this, since

(AB)C = A(BC)

11

Here is another way of looking at the above equation. See how the matrices can
collapse into one?

z3 = (((W 3W 2)W 1)a) +W 3W 2b1 +W 3b2 + b3

Therefore we are back at square one as we were with two layers, just with more
bias terms... So how do we make it so that we can draw more than just lines in our
spaces to solve the XOR problem? The answer lies with nonlinearities (shocker!).

Synthesis Questions:

1. Define the following words:

• Neuron
• Layer
• Hidden Layer
• Weight
• Bias

2. If you have a neural network with an input dimension of 3, a hidden dimension of 4,
and an output dimension of 1, then what would:

• The dimension of W between the input and hidden layers be?
• The dimension of W between the hidden and output layer be?
• The dimension of b for the hidden layer?

3. Explain in your own words why a linear classifier (like a perceptron) cannot be used
to solve the XOR problem

2 Non-Linearity and Activation Functions
2.1 Introducing Nonlinearities
Let’s take a step up from the XOR problem and look at something arguably more
complex: Image classification. Image classification, especially with categories as
specific as ‘dog’ or ‘cat’, is very challenging. It requires a level of detail and
processing that many machine learning algorithms cannot achieve, especially linear
algorithms, where a change in the input is directly proportional to the
corresponding change in output. So, to tackle complex tasks such as image
classification, neural networks, and deep learning models need to employ
non-linearity. In non-linear models, changes in input can cause varying levels of
change in corresponding output. Going back to our dog example, if we change the

12

size of a dog’s ear, we want that to have little impact on the model’s conclusion.
But if we change how the dog’s fur appears, that should have a much larger impact.
Non-linearity can help us achieve this. To introduce non-linearity to neural
networks, models implement activation functions.

Activation functions are applied after computing the raw values to populate the
nodes of a neural network layer. These raw outputs are called logits. Recall Figure
1. In the below equation, the values in the vector z would be the logits of the
hidden layer:

z = Wa + b
This is NOT immediately what is passed to the final layer. Instead, we first apply a
non-linear function to the logits. We can refer to this function as ϕ(·), and we will
give specific examples of this function later. Therefore, a multi-layer neural
network (or in other words, a non-linear multi-layer perceptron) can be written out
as follows:

z1 = ϕ(W 1a + b1)

z2 = ϕ(W 2z1 + b2)

z3 = ϕ(W 3z2 + b3)

Now let’s collapse this equation, and see if we run into the same problem we had
with a multi-layer linear perceptron:

z3 = ϕ(W 3ϕ(W 2(ϕ(W 1a + b1) + b2) + b3)

The matrices can no longer be collapsed into just one, meaning that we can draw
more complex boundaries between classes, or find more complex patterns within
regression tasks. Using activation functions to allow for non-linearity gives deep
learning and neural network models the strength to find solutions for complex
tasks. A fundamental concept in the theory of neural networks, called the
Universal Approximation Theorem, states that a neural network with at least
one hidden layer with a finite number of neurons can approximate any continuous
function to any level of accuracy with the use of certain activation functions. So,
using non-linearity, neural networks can predict almost anything and do so
accurately. Of course, we would also need enough data and compute to train this
arbitrarily large model.

13

2.2 Common Activation Functions

Figure 5: Plots of various activation functions

One commonly used activation function is the sigmoid function. This function
squashes inputs into the range between 0 and 1. It is useful in binary classification
tasks but can cause issues like vanishing gradients in deeper networks (more on this
later). The formula, where x is a given neuron’s output is:

σ(x) = 1
1+e−x

The hyperbolic tangent activation function, or tanh, squashes inputs between -1
and 1. It is zero-centered, which makes it easier for optimization compared to the
sigmoid function. The tanh formula is:

tanh(x) = ex−e−x

ex+e−x

Another activation function, Rectified Linear Unit or ReLU, outputs the input
if it’s positive, and zero otherwise. It is computationally efficient and helps alleviate
the vanishing gradient problem by allowing gradients to flow when the input is
positive. ReLU is written as:

ReLU(x) = MAX(0, x)

There is also another form of the ReLU activation function called Leaky ReLU
that allows a small, non-zero gradient when the input is negative, helping prevent
the issue of ”dead neurons” (neurons that never activate). Leaky ReLU looks like:

f(x) =

{
x, if x > 0

0.01x, if x ≤ 0

14

Synthesis Questions:

1. Define the following words:

• Activation function
• Logits

2. Why are activation functions important for increasing the power of a neural network?

3. In your own words, what is the Universal Approximation Theorem?

3 Backpropagation
3.1 Loss Functions
How does a neural network ‘learn’ using training (a.k.a labeled) data? It uses a
process called backpropagation. This process adjusts the weights assigned to
connections between neurons and the biases assigned to nodes to improve the
algorithm’s accuracy. Imagine for a moment, that we are working with deep neural
network classifying images as dog or cat. In this case, we will want to assign a
higher weight to the feature ‘long tongue’ because that is an important feature in
determining whether something is a dog or a cat. To implement this functionality,
the model will have a hidden neuron that “lights up” (has a high value) when the
input animal image has a long tongue. This will significantly sway the model’s
decision-making process, increasing the probability of the image being a dog. In
comparison, a neuron relating to the feature ‘fur color’ might want to have a
smaller weight connecting it to the next layer, because cats and dogs have similar
fur colors and this feature isn’t as important in differentiating between cats and
dogs. The backpropagation process will slowly adjust these weights to be this way,
leading to an excellent classifier.

So how does backpropagation determine which weights and biases to manipulate?
To understand that, we have to discuss loss functions. A loss function is used to
measure how far off the network’s predictions are from the actual target values. It
provides a numeric value that represents the error in the prediction. Generally,
higher loss means the model did not perform well, and vice versa. The goal of
backpropagation is to reduce this loss by adjusting the weights in the network. A
common example of a loss function is Mean Squared Error (MSE), which is
often used for regression tasks. The formula for MSE is:

15

L =
1

N

N∑
i=1

(yi − ŷi)
2

where L is the loss, or the model’s error, yi is the target-value (also known as the
correct answer or label) for the specific input, ŷi is the value the model
predicted/guessed, and N is the number of training examples shown to the model.
You may notice that this version of the MSE loss function works only with scalar
outputs from a neural network. There are versions of MSE that can handle
multiclass output. However, it is generally accepted that if you have a multiclass
classification problem, a better loss function to use is Cross-Entropy Loss (or log
loss). This loss function measures the difference between two probability
distributions. The formula for Cross-Entropy Loss is:

L = − 1

N

N∑
i=1

K∑
k=1

yik · log(ŷik)

where K is one of the outcomes or classes, yi is the actual probability of the given
input belonging in class K, and ŷi is the probability the model has assigned to class
K for the given input.

Calculating these loss metrics is the final step of what is called the forward pass.
This is what we have studied so far. After this begins the backward pass or
backpropagation.

3.2 Derivatives and Gradients
Before we delve into the semi-convoluted math behind backpropagation, we should
revisit some concepts from calculus. Take a look at the equation and associated
graph below:

f(x, y) = z = x2 + y2

16

Figure 6: Illustration of the function f(x, y) = x2 + y2

The gradient of a multivariate function (denoted in this case as ∇f(x, y) or ∇z)
points you in the direction of steepest ascent of a function given a point. To
calculate the gradient of a function, you simply take the partial derivative of the
function with respect to each variable and represent the derivatives as directions of
a vector. Here is an example using f(x, y) = z = x2 + y2:

∇z =

[
∂z
∂x
∂z
∂y

]
Solve for ∂z

∂x
:

∂

∂x
z =

∂

∂x
(x2 + y2)

∂z

∂x
= 2x

Solve for ∂z
∂y

:

∂

∂y
z =

∂

∂y
(x2 + y2)

∂z

∂y
= yx

∇z =

[
2x
2y

]

17

We now have a way to, given any point on the function, determine which direction
to move to increase z the most. If we plug in (1, 1), we get[

2
2

]
If we plot this as a vector on our previous graph:

Figure 7: Illustration of the function f(x, y) = x2 + y2, with a vector showing the direction of
steepest ascent from point (1, 1)

So how does this relate to neural networks? Well, we can simply think of a neural
network as a large multivariate function, with the variables in question being the
weights. Think about it: we have a loss function that we want to reduce. We can
imagine this as z in the previous example. We want to find out how to change the
weights to reduce the loss function the quickest (direction of steepest descent). So,
we just flip the idea of a gradient on its head. If we can find ∇WL (the gradient of
L with respect to all weights), we can adjust the weights to minimize the loss!

Wnew ← Wold −∇WL

Calculating this by hand is near impossible, and nobody expects you to. There are
tricks we can use to calculate gradients in chunks rather than taking 100’s of
derivatives.

18

3.3 Gradient Flow
The model first calculates the derivative of the loss with respect to ŷi, since ŷi is
the output of the model. For ease of understanding, we will use MSE loss:

L =
1

N

N∑
i=1

(yi − ŷi)
2

∂

∂ŷ
L =

∂

∂ŷ

1

N

N∑
i=1

(yi − ŷi)
2

∂L

∂ŷ
=

1

N

N∑
i=1

−2(yi − ŷi)

This value is directly calculable, and it is propagated backward, starting “gradient
flow”.

Lets say ŷi = σ(z). Recall that σ(·) represents the sigmoid activation function.
This therefore represents the activation function applied to the logits of the output
neuron.

Also define z = f(w1, w2, ...wn) =
∑n

i=1 aiwi + b. Recall that ai is the output of
neuron i from the previous layer. This therefore represents the calculation of the
output neuron’s logits using the outputs from the neurons of the previous layer.

How can we calculate ∇WL =

[
∂L
∂w1

, ∂L
∂w2

, ..., ∂L
∂wn

]
? Using the chain rule, we can

rewrite any ∂L
∂wx

as:

∂L

∂wx

=
∂L

∂ŷ
· ∂ŷ
∂z
· ∂z

∂wx

where ∂L
∂wx

is the gradient of the loss with respect to an arbitrary weight wx, ∂L
∂ŷ

is
the gradient of the loss with respect to the predicted output, ∂ŷ

∂z
is the gradient of

the output with respect to the weighted sum z, and ∂z
∂w

is the gradient of the
weighted sum with respect to the weight w.

We already have ∂L
∂ŷ

as shown above. ∂ŷ
∂z

is calculated as such:

ŷi = σ(z)

19

∂

∂z
ŷi =

∂

∂z
σ(z)

∂ŷi
∂z

= σ′(z)

σ′(z) is just the derivative of the sigmoid. This is easy to compute. Calculating ∂z
∂wx

is a little harder, as we have considered wx as an arbitrary weight. Let us calculate
the partial derivative with respect to just w1. Calculating the other w follows
easily.

f(w1, w2, ..., wn) = z =
n∑

i=1

aiwi + b

∂

∂w1

z =
∂

∂w1

n∑
i=1

aiwi + b

∂z

∂w1

= a1

It follows that ∂z
∂w2

= a2, ∂z
∂w3

= a3, and so forth. Therefore we can say that
∂z
∂wx

= ax. We can plug all these results into our chain rule:

∂L

∂wx

=
∂L

∂ŷ
· ∂ŷ
∂z
· ∂z

∂wx

∂L

∂wx

= (
1

N

N∑
i=1

−2(yi − ŷi)) · (σ′(z)) · (ax)

For deeper neural networks with many layers, this computational graph becomes
much more complex. However, the idea stays the same: Find the gradients of the
loss with respect to the weights of each layer. Do this by passing gradients
backward through the network. Calculating the gradient with respect to the biases
is done the same, and even simpler! Performing gradient descent is then as simple
as the equation from before, with a small constant added to ensure these changes
are incremental and not massive:

Wnew ← Wold − λ∇WL

This constant λ is called the learning rate, and we will discuss its significance
later. Congratulations, you know understand basic gradient descent!

20

3.4 Optimizers and Learning Rates
While gradient descent is a common optimizer and is easy to follow
mathematically, it is unfortunately very expensive computationally and can be
slow. Stochastic Gradient Descent (SGD) is a similar, more efficient,
optimizer. SGD speeds up this process by updating weights after computing the
gradient on a small, random batch of data, rather than the entire dataset. Another
popular optimizer is Adam. Adam combines the benefits of both SGD and another
optimization technique called Momentum, which helps the optimizer move faster
by incorporating information from past gradients. Adam also adapts the learning
rate for each weight based on how the gradients change, making it efficient for
handling noisy gradients and sparse data. Many people use Adam because it
performs well across a wide range of tasks. It is essential to understand that Adam
fine-tunes the learning process dynamically, making it more flexible than standard
SGD. A deep dive into how each of these optimizers work is a bit beyond the scope
of this article, but is interesting and I suggest you do some independent research!

A common thread between all of these optimizers is that they share one parameter
in common: the learning rate. This is a scaling factor applied to the calculated
gradient before it is used to adjust the weights. The size of this scaling determines
how big of a “step” the weights take while traversing the “loss landscape”.
Optimizer classes in most deep learning libraries (e.g. PyTorch, Tensorflow) have
defaults that work well for each of the different optimizers. Starting here is usually
a good idea, because a learning rate that is too small will take way too long to
converge, while a large learning rate may not converge at all! For an illustration of
this, see Figure 8.

21

Figure 8: A demonstration of how different learning rates affect convergence of a loss function (in
this graphic represented as J(θ).

Synthesis Questions:

1. Define what the purpose of a loss function is

2. What are the different use cases for Mean Squared Error vs. Cross Entropy Loss?

3. What is the difference between a derivative and a gradient?

4. Find the gradient for this function at (3, 2, 1):

f(x, y, z) =
2

3
x2 + y2 − 2y + z4 − 4

3
z3

5. Find the derivative of the sigmoid (σ) function and plot it. Why might this activation
function prevent gradients from flowing back through the network during the backward
pass?

6. Why might the “steps” taken by SGD not be as directly in the most optimal direction
compared to GD?

4 Regularization
We will now cover an incredibly important topic for deep learning:
regularization. In ML, regularization often is applied in the form of adding a
norm to the loss function, encouraging weights to reach smooth (L2) or sparse (L1)
optima. Regularization also exists in deep learning to prevent overfitting, but
comes about in more interesting and varied ways. We will quickly cover two

22

common ones in shallow detail.

4.1 Dropout
Dropout: During each forward pass, a certain fraction of neurons are temporarily
dropped from the neural network. The connections they have to other neurons are
totally ignored and they are not used in the forward nor the backward pass for that
specific training example. In other words, dropped neurons have no direct bearing
on the output and their associated weights will not change from that training
example. This only occurs at train time. At test time, all neurons are allowed to be
used by the network all the time. See Figure 9 for a visual representation of this
process.

Figure 9: Visualizing dropout in a fully connected neural network

Why would we do this? Well, if a network is allowed to use all of its neurons all of
the time, there is no guarantee that the network will effectively use all the neurons.
Perhaps due to a strange initial weight configuration, the random seed, or some
other factor, the network will only use a very small subset of its available power.
Many neurons will end up going essentially unused and their weights meaningless,
despite the resources being allotted to train them. This consolidation of
computation into a small portion of the network leads to much lower robustness.

Here is an analogy: a 10-armed robot is trained to pick up an apple from a desk.
The robot uses one of its arms at random, and only trains with that arm. Then
during test time, we bind the arm the robot used the most. Since the robot has not

23

learned how to use any of its other arms, it fails at a task it should very easily be
able to do. Dropout is like forcing the robot to pretend it has lost a few arms each
training example. It is then forced to use all of its arms, and gets good at picking
up the apple with any of them. This robot is now much more robust when deployed
into the real world, as small perturbations do not totally handicap it.

One small detail is that once training time is over, all neurons have their weights
scaled by 1 minus the dropout rate. Therefore, the expected distribution of values
flowing from one layer to the next stays the same as it was during training time.

4.2 Batch Normalization
Batchnorm: Batchnorm, or batch normalization, is a very common technique
used to regularize neural networks and improve training efficiency. Batchnorm can
be thought of as an extra layer in a neural network with a few additional
parameters. Essentially, before information flows from one layer to the next, the
data is normalized across examples in the batch. Let’s break this down.

What is a batch? It is common to not just pass one example through a neural
network at a time, but many. Groups of 64, 1024, 4096, etc. training examples are
used at once before a backward pass is performed. Then what is normalization?
Within this aforementioned batch, examples are mean-shifted by a mean µ and
then divided by a standard deviation σ. This is normalization and it keeps the data
centered around (0, 0) and evenly varied. In addition, these µ and σ parameters are
slightly adjusted for each new batch by taking a moving average through each
previous batch. There are also additional “scale and shift” parameters represented
by γ and β respectively. As the network sees more and more examples, the β and γ
parameters are also slowly adjusted to find a scale and shift transformation to the
normalized data that improves performance. This is shown in the following series of
equations, where xi is a datapoint and m is the number of datapoints in a batch.

Estimating µ and σ for a batch:

µbatch =
1

m

m∑
i=1

xi

σbatch =

√√√√ 1

m

m∑
i=1

(xi − µbatch)

24

Updating the moving average:

µ = αµ+ (1− α)µbatch

σ = ασ + (1− α)σbatch

Normalize xi to x̃i using the moving average:

x̃i =
xi − µ

σ

Scale and shift before sending values to next layer:

xoutput
i = γx̃i + β

Mean-centered and evenly varied data allows gradient descent to descend the
weights smoothly down to a optimal minimum. If two features input into a neural
network were on wildly different scales (e.g. House price vs. number of bedrooms),
then optimization becomes clunky. Making a large shift in weights is necessary to
process highly varied housing prices, but this same shift negatively affects how the
network processes the more tame “number of bedrooms” feature since more precise
changes are needed. Normalization plus scale and shift removes this problem, and
thus batchnorm helps greatly with a network’s convergence.

Synthesis Questions:

1. In your own words, why does Dropout work?

2. Why do you think a moving average of µ and σ are useful for a network with batch
normalization layers if there are many batches to process?

3. Think of, or find online, a method of regularization within neural networks not dis-
cussed here. Write two to three sentences on how it works.

5 When to Use Deep Learning/Neural Networks
While we have shown the great power and ability of neural networks and deep
learning, with all this power comes great cost. Neural networks are power-hungry,
taking up significant computation power for all the processing they have to do.
They are a powerful tool and should be used with caution and respect. As our i2
president once said, don’t use a bomb to cut a sandwich. It is important to
know when to use them. Deep learning models are useful for image, audio, and
video classification or, in other cases, where non-linearity is necessary. Neural

25

networks also require considerable amounts of data for a decent accuracy. Only use
them when you have enough labeled data to properly train them on. In summary,
while neural networks offer unmatched capabilities for complex tasks like image and
audio classification, they are not always the most efficient tool. Sometimes a
simpler model will get the job done while using half the resources. The key is
understanding when their power is necessary and when a more lightweight solution
will suffice. Always choose the right tool for the job.

6 Conclusion (DL)
This section covered the fundamental concepts of deep learning, with a heavy focus
on neural networks. We also introduced important concepts like non-linearity and
backpropagation. We closed with an overview of regularization techniques used in
deep learning today. There is much more to deep learning we could not cover in
this article. Neural networks especially are heavily used in many fields; either in
larger deep learning architectures or as function approximators for some other goal.
Understanding how they work and how to train them is critical to evaluating these
systems.

26

Thank You for Reading :)
- The Interactive Intelligence Team

27

	Introduction to Neural Networks
	Fundamental Structure
	Flow of Information
	The Perceptron and XOR

	Non-Linearity and Activation Functions
	Introducing Nonlinearities
	Common Activation Functions

	Backpropagation
	Loss Functions
	Derivatives and Gradients
	Gradient Flow
	Optimizers and Learning Rates

	Regularization
	Dropout
	Batch Normalization

	When to Use Deep Learning/Neural Networks
	Conclusion (DL)

