
Interactive Intelligence (I2) Grimoire

G
au

ra
ng

P
en

dh
ar

ka
r

Varun AnanthI2 Leadersh
ip

C
arter

Sw
artout

Arya Sanjay Misha Nivota

v1.0

1

The I2 Grimoire
We are Interactive Intelligence, an organization of interdisciplinary thinkers that seek to probe

intelligence through the intersection of AI, neuroscience, and related fields. This book serves as a
launchpad for the basic theory that underlies major AI systems and covers five large (intersecting)

spheres: Machine Learning, Deep Learning, Computer Vision, Reinforcement Learning, and
Language Modeling. While by no means a thorough overview of any one of these fields, this book

serves as a starting point that will paint a large picture in your mind about the five
aforementioned topics. This book is written in layman’s english, and introduces some complex
(but core) math while explaining as much intuition behind it as possible. Regardless of your
background, there is something interesting you will learn in these pages. Feel free to explore

sections that interest you, backtracking if you encounter unfamiliar concepts.

This book is a culmination of many months of work by very talented students from the University
of Washington. It was entirely created by I2 members, and we hope that you enjoy what we have

written on these pages and leave better equipped to navigate this world we share with AI
algorithms.

Additional Information
This book was written to pair with the Interactive Intelligence intro to NeuroAI course, which

lives here: Interactive Intelligence Intro to NeuroAI Course Website. There are questions
associated with some sections, which serve as optional exercises for you to test your

understanding. If you have questions or comments on the information in this book, please contact
varunananth1@gmail.com

2

https://course.uw-i2.org/
mailto:varunananth1@gmail.com

Contents
MACHINE LEARNING 7

1 Introduction to Machine Learning 8
1.1 Data Splitting: Train and Test Sets . 8
1.2 Regression and Classification Tasks . 9

2 Linear Regression: Regression 9
2.1 Fundamentals of Linear Regression . 9
2.2 Understanding Sum of Squared Errors (SSE) . 10
2.3 Minimizing SSE: Simple Case . 11
2.4 Minimizing SSE: General Case . 11
2.5 Ridge and LASSO Regressions . 15

3 Logistic Regression: Classification 19
3.1 Fundamentals of Logistic Regression . 19
3.2 The Sigmoid Function and Its Role . 20
3.3 Training with the Log-Likelihood Loss . 21
3.4 Extensions to Multiclass Classification . 21
3.5 Why It’s Called “Regression” . 21

4 K-Means Clustering: Unsupervised Learning 22
4.1 Introduction to Unsupervised Learning . 22
4.2 How K-Means Clustering Works . 22
4.3 Minimizing Within-Cluster Distance . 23
4.4 Choosing the Number of Clusters . 23
4.5 Limitations of K-Means Clustering . 24

5 K-Means vs. K-Medians Clustering 25
5.1 Introduction to K-Medians Clustering . 25
5.2 K-Medians Use Cases . 25
5.3 Key Differences Between K-Means and K-Medians 26

6 Other ML Concepts 27
6.1 Bias-Variance Tradeoff . 27
6.2 Convexity . 28

7 When to Use Machine Learning Algorithms 29

8 Conclusion (ML) 30

DEEP LEARNING 31

9 Introduction to Neural Networks 32
9.1 Fundamental Structure . 32
9.2 Flow of Information . 34
9.3 The Perceptron and XOR . 36

3

10 Non-Linearity and Activation Functions 39
10.1 Introducing Nonlinearities . 39
10.2 Common Activation Functions . 41

11 Backpropagation 42
11.1 Loss Functions . 42
11.2 Derivatives and Gradients . 43
11.3 Gradient Flow . 46
11.4 Optimizers and Learning Rates . 48

12 Regularization 49
12.1 Dropout . 50
12.2 Batch Normalization . 51

13 When to Use Deep Learning/Neural Networks 52

14 Conclusion (DL) 53

COMPUTER VISION 54

15 Introduction to Computer Vision 55
15.1 What is Computer Vision? . 55

16 Convolutional Neural Networks 55
16.1 Convolutional Layer . 55
16.2 Nonlinearity in CNNs . 59
16.3 Pooling Layer . 60
16.4 Fully Connected Layer . 61
16.5 Loss Functions, Optimizers, and Regularization . 62

17 Self-Supervised Learning 63
17.1 Methods of SSL . 63
17.2 Importance of SSL . 64

18 Image Segmentation 64
18.1 Techniques of Segmentation . 65

19 When to Use Computer Vision 66

20 Conclusion (CV) 67

REINFORCEMENT LEARNING 68

21 What is Reinforcement Learning? 69
21.1 Problem Definition . 69
21.2 Common Symbols and Definitions . 69
21.3 Markov Decision Process . 72
21.4 On vs. Off-Policy RL . 73

4

22 Imitation Learning 74
22.1 Basic Behavior Cloning . 74
22.2 Problems with Behavior Cloning . 76

23 Proofs for Problems with Behavior Cloning 77
23.1 Mode Averaging . 77

24 DAgger Algorithm 80

25 Policy Gradient 82
25.1 Basic Policy Gradient . 82

26 Advanced Policy Gradient Concepts 85
26.1 Return-to-Go . 85
26.2 Baseline Function . 85
26.3 Natural Policy Gradient . 86
26.4 Proof for Gradient of the PG Objective . 87

27 Deep Q-Learning 90
27.1 Q-Functions and Bellman Equations . 90

28 Making Q-Learning Work 93
28.1 Replay Buffer and Memory . 93
28.2 Optimization Stability and Polyak Averaging . 93
28.3 Explore vs. Exploit and epsilon-Greedy Search . 94

29 When to Use Reinforcement Learning 95

30 Conclusion (RL) 96

LANGUAGE MODELING 97

31 Introduction to Language Modeling 98
31.1 How Are Language Models Trained? . 98
31.2 Important Concepts in Language modeling . 99

32 Foundational Concepts 99
32.1 Tokenization: The First Step . 99
32.2 Embeddings: Representing Tokens Numerically . 100
32.3 Sequence Modeling: The Core Objective . 103

33 Core Architectures of Language Models 105
33.1 Recurrent Neural Networks (RNNs) . 105
33.2 Transformers: A Paradigm Shift . 106

34 NLP Tasks Enabled by Language Models 110

5

35 Advanced Topics in Language Modeling 111
35.1 Challenges in Large Language Models (LLMs) . 111
35.2 Reinforcement Learning with Human Feedback (RLHF) 114

36 When to Use Language Models 116

37 Conclusion (LM) 116

6

MACHINE LEARNING

7

1 Introduction to Machine Learning
Machine Learning (ML) is a powerful subset of artificial intelligence (AI) that
empowers computers to learn from data and make predictions or decisions without
the need for explicit programming. Rather than following static, rule-based
instructions, machine learning models identify patterns, structures, and
relationships within data. These models generalize from known data to make
predictions about new, unseen data, much like how humans learn from past
experiences.

Consider the task of recognizing handwritten digits, like those in postal addresses
or bank checks. We can train a machine learning model using a dataset of labeled
images, where each image corresponds to a digit from 0 to 9. The model learns to
recognize the unique patterns of each digit by analyzing features such as curves,
edges, and line intersections. Over time, the model refines its ability to correctly
identify digits it has never encountered before, thus demonstrating its ability to
generalize from the data it was trained on.

1.1 Data Splitting: Train and Test Sets
Train/Test Split refers to this method of dividing the dataset, typically using an
80-20 or 70-30 ratio. For example, in an 80-20 split, 80% of the data is used for
training, and the remaining 20% is held back for testing
The reason we need a test set is to prevent overfitting, a common problem where
a model becomes too tailored to the training data, performing well on it but poorly
on new data. By evaluating on the test set, we can gauge whether the model has
generalized well beyond the data it was trained on.
In practice, the following steps are often taken when working with train/test splits:

• Step 1: Data Splitting. Split the data into training and test sets before
training the model. This prevents any information from the test set from
leaking into the model.

• Step 2: Model Training. Use the training set to build the machine learning
model by adjusting weights, minimizing errors, or finding patterns.

• Step 3: Model Evaluation. Once the model is trained, evaluate it on the
test set. Common evaluation metrics include accuracy, precision, recall, and
mean squared error, depending on the type of model.

In some cases, a third subset called a validation set is also used. The validation
set helps tune hyperparameters and prevent overfitting before final testing on the
test set.

8

This train/test split method is fundamental to machine learning as it ensures that
models can be assessed on their ability to generalize, avoiding bias toward the data
they were trained on.

1.2 Regression and Classification Tasks
Machine learning generally tackles two major types of problems: regression and
classification.

Classification is the task of categorizing a set of items into predefined classes. For
example, classifying an image as either a “cat” or a “dog.” The output is typically a
discrete label, such as “yes” or “no,” or in this case, “cat” or “pig.”

On the other hand, regression is about predicting a continuous value. For
instance, predicting a person’s weight based on their height is a regression task,
where height is the input feature and weight is the predicted continuous value. In
multiple regression, multiple features (like height, age, etc.) are used to predict an
output, such as house prices or stock market trends.

2 Linear Regression: Regression
2.1 Fundamentals of Linear Regression
In machine learning, linear regression is one of the most fundamental algorithms. It
tries to model the relationship between input features and the target output by
fitting a straight line to the data points. The general form of a linear regression
model is:

ŷ = b+ w1x1 + w2x2 + ...+ wnxn

Where:

• ŷ is the predicted output,

• x1, x2, ..., xn are the input features,

• w1, w2, ..., wn are the weights (coefficients) assigned to each feature,

• b is the intercept.

The goal of linear regression is to find the values of w and b that minimize the
difference between the predicted values and the actual target values in the training
data. This is often done by minimizing the Sum of Squared Errors (SSE).

9

2.2 Understanding Sum of Squared Errors (SSE)
The Sum of Squared Errors (SSE) is a commonly used metric in regression
analysis to quantify how well a model fits the observed data. It measures the total
difference (or error) between the actual values (from the dataset) and the predicted
values (generated by the model). Specifically, SSE sums the squared differences
between each actual value and its corresponding predicted value. By squaring these
differences, the metric ensures that all deviations are counted positively (i.e., large
errors in either direction, above or below, contribute significantly to the total error).
The formula for SSE is:

SSE =
∑m

i=1(yi − ŷi)
2

Where:

• yi represents the actual value for data point i,

• ŷi represents the predicted value from the model for the same data point,

• m is the number of data points in the dataset.

The concept of squaring the errors is essential because it penalizes larger deviations
more than smaller ones. In other words, if a prediction is far off from the actual
value, its contribution to the SSE will be disproportionately larger, making it easier
to identify large errors.

Figure 1: An illustration of two lines of fit that would produce a low and high SSE respectively.
The line that fits the data better has a low SSE

The goal in regression is to minimize SSE, because a lower SSE value indicates a
better fit of the model to the data. A model with a small SSE suggests that its
predictions are close to the actual observed values, indicating that the model is
accurate and effectively capturing the patterns in the data.

10

2.3 Minimizing SSE: Simple Case
Least Squares Regression is one of the most widely used methods in statistics
for finding the best-fitting line through a set of data points. The term “least
squares” refers to the fact that the method seeks to minimize the sum of squared
differences (i.e., the SSE) between the observed values and the values predicted
by the regression line. The result is a line (or, in higher dimensions, a hyperplane)
that minimizes the overall prediction error across all data points.
In simple linear regression, the model is expressed as:

ŷ = w0 + w1x

Where:

• w0 is the intercept of the line, representing the predicted value when the
input x = 0,

• w1 is the slope or weight, representing the change in the predicted value ŷ for
a one-unit change in the input x,

• x is the input (or feature) variable, and

• ŷ is the predicted value based on the input.

In the least squares method, the goal is to find the optimal values for w0 and w1

that minimize the SSE, ensuring that the line fits the data as closely as possible.
The same concept can be extended to multiple regression, where we aim to
minimize the SSE by adjusting multiple weights w1, w2, ..., wn.
Mathematically, this optimization process requires taking the partial derivatives of
SSE with respect to the weights (including the intercept) and setting them to zero.
This gives us the normal equations:

w0 =
∑

y−w1
∑

x
n

w1 =
∑

(xi−x̄)(yi−ȳ)∑
(xi−x̄)2

These equations provide the values of the intercept (w0) and the slope (w1) that
minimize SSE. Once these values are calculated, the resulting regression line
represents the best-fitting line for the data according to the least squares criterion.

2.4 Minimizing SSE: General Case
What if you had a model with many more input features, like the one we showed at
the beginning of the article?

11

ŷ = b+ w1x1 + w2x2 + ...+ wnxn

It becomes much easier to represent the solution for the weights in matrix form.
However, we need to translate what we have here into matrix form first.

We first define w as a vector consisting of all the weights in our model:

w =

w1

w2
...
wn

Our goal is to find ŵ, the weights for our model that minimize the SSE. Similarly,
we define xi as a vector consisting of all the features of a single datapoint:

xi =

x1

x2
...
xn

You can think of each xi as a point in n-dimensional space. We denote this
mathematically as xi ∈ Rn. Using this, we can define X as a matrix holding all of
our m datapoints:

X =

x⊤
1

x⊤
2...

x⊤
m

We say that X ∈ Rm×n. Finally, we define y as a vector holding all of our true
labels y from our training set.

y =

y1
y2
...
ym

The amount of y values is the same as the amount of x points (m). Using these
elements, we can actually very easily construct a closed-form solution to ŵ!

ŵ = (X⊤X)−1X⊤y

12

How to derive this is a tad beyond the scope of this article, especially if you are
unfamiliar with matrix calculus. However, the proof is provided below for
thoroughness. For a quick refresher on matrix algebra, see Essence of Linear
Algebra Series by 3Blue1Brown. For a quick refresher on matrix calculus, see
Matrix Calculus for Machine Learning by StatQuest.

13

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/watch?v=tIkzL4jlt8g

ŵ = argmin
w

n∑
i=1

(yi − ŷi)
2 Find w that minimizes the SSE. This is ŵ.

= argmin
w

n∑
i=1

(yi − (x⊤
i w + b))2 Plug in ŷi = x⊤

i w + b.

= argmin
w

n∑
i=1

(yi − (x⊤
i w))2

Disregard b, since an intercept can be rep-
resented by appending a 1 to x.

0 =
∂

∂w

n∑
i=1

(yi − (x⊤
i ŵ))2

Find ŵ by taking the partial derivative of
the argmin term and setting it equal to 0.

=
n∑

i=1

∂

∂w
(yi − (x⊤

i ŵ))2 Property of derivatives.

=
n∑

i=1

2(yi − x⊤
i ŵ)(−xi) Derive.

=
n∑

i=1

(yi − x⊤
i ŵ)(xi) Divide by -2

=
n∑

i=1

(xi)(yi − x⊤
i ŵ) The term yi − x⊤

i ŵ is a scalar. cx = xc

=
n∑

i=1

(xiyi − xix⊤
i ŵ) Distribute

=
n∑

i=1

xiyi −
n∑

i=1

xix⊤
i ŵ Distribute

(
n∑

i=1

xix⊤
i)ŵ =

n∑
i=1

xiyi Move second term to LHS.

(X⊤X)ŵ = X⊤y Convert from vector summation form to
matrix form

(X⊤X)−1(X⊤X)ŵ = (X⊤X)−1X⊤y Left multiply by (X⊤X)−1

ŵ = (X⊤X)−1X⊤y Cancel

This is pretty amazing. If you were to create just X and y for any regression

14

dataset, you can find ŵ. It doesn’t matter how many features you have, this will
work. We also know for a fact that these weights in ŵ are the weights that will
minimize the SSE the most due to a property called convexity. We will come back
to what this is later. In addition to linear regression, we have two other very
common types of regression called Ridge and LASSO.

2.5 Ridge and LASSO Regressions
We must first quickly introduce a concept called regularization. Quite often, you
will find that the weights estimated by ŵ do minimize the SSE for training data,
but can perform poorly on real-world data post model deployment. This is because
the weights found are too well tuned to the training data, and cannot generalize
with the same performance to unseen data. What can also happen is that some
weights will become very large, since the feature they are associated with is
important for predicting yi. Let’s say we are training a regression model to predict
house prices based on house features. One feature could indicate if a house is a
lakefront property. Since our training data is primarily from Florida, the indication
of a lakefront property means that the property has a very high value. So, the
model basically just uses this one feature to predict housing price. All other
features have their associated weights very low, meaning they barely influence the
model’s output. The model works just fine for houses in Florida. However, when
we go to predict the prices of houses in Wyoming, we see that none of them are
lakefront properties and therefore this feature that the model placed so much
importance on has become useless. The model “put all its eggs in one basket” and
now has poor performace on real data despite performing wonderfully on the
training set! We will explore this concept further when talking about the
bias-variance tradeoff, but for now just understand that the weights you find
with ordinary linear regression tend to not generalize well.

What can we do in this case? Well, we can penalize weights becoming too high by

15

modifying our SSE optimization objective to include a term that increases as the
weights do. This will encourage the model to find a solution for ŵ while keeping
the weights more balanced. What this term is determines which linear regression
variant we get. If we use the L2-norm, we get Ridge regression. If we use the
L1-norm, we get LASSO regression. If we use both, we get ElasticNet. This last
model is beyond the scope of this article, but we will explore how the first two
behave.

But first, what are the L2 and L1 norms? These norms are mathematical functions
that map from vector space to scalar space (Rn → R). They are defined as such:

||x||2 =

√√√√ n∑
i=1

x2
i

||x||1 =
n∑

i=1

|xi|

So the L2 norm is the square root of the sum of squared elements from the vector,
and the L1 norm is the sum of the absolute value of elements from the vector.
These are our regularizers. If we calculate these norms on ŵ, you can see that the
result gets larger if the elements of ŵ are large/unbalanced (something we don’t
want). We want to find a solution that attempts to minimize ||ŵ||2 or ||ŵ||1 along
with the original SSE objective. We therefore write our two new optimization
objectives down:

Ridge SSE =
m∑
i=1

(yi − ŷi)
2 + λ||ŵ||2

LASSO SSE =
m∑
i=1

(yi − ŷi)
2 + λ||ŵ||1

The λ term allows us to control how much regularization we want. A small number
makes the mode kind of “care” about keeping its weights down. A large value
forces the model to keep its weights down at the expense of weights that actually
fit the data. Finding the right value for λ is a balancing act.

As for how to actually find ŵ for these new optimization objectives, that is a little
tricky. Ridge regression has a closed-form solution that can be derived similar to
ordinary linear regression. It also looks quite similar:

16

ŵ = (X⊤X + λI)−1X⊤y
I is the identity matrix, a Rn×n matrix in this case with ones down the diagonal
and zeroes everywhere else. How this comes about is hidden in the algebra and
calculus of the derivation. That derivation is much beyond the scope of this article,
but not impossible to understand if you grasp the ordinary linear regression closed
form solution derivation. For LASSO, you have to use more complex techniques
like variations of gradient descent. We will cover this topic in later units.

What is the difference between these two linear regression variants? If you use
Ridge regression, your final ŵ value will have weights that are low and spread out
across all features. If you use LASSO regression, you will get a “sparse” ŵ,
meaning that unimportant features will have their weights set to 0 and the
important ones will have nonzero values. This is due to how the norms manifest on
the “loss landscape”. As shown in Figure 2, the solution (minima) to the Ridge SSE
or LASSO SSE must sit on the intersection of the a contour (oval) and the shape
created by the norm. For L1, this norm has peaks at the axes, causing solutions to
have zero values for w1 but nonzero values for w2. The L2 norm is less harsh, with
a lower but nonzero value for w1. Cranking up λ will exaggerate these effects, with
incredibly high values for λ in LASSO regression resulting in only one or two
features having non-zero weights.

17

Figure 2: Showing how the L1 and L2 norms influence ŵ through the nature of their
manifestations on the loss landscape as a hyperdiamond and hypersphere respectively

Both of these regression variants have use cases where they shine, so no one is
“better” than the other. Ridge regression should be used when you want to ensure
all features influence the final output, and you should use LASSO when you want
to perform intelligent “feature pruning” and only use relevant features for the final
output (perhaps due to computational constraints).

18

Synthesis Questions:

1. What is SSE? Why do we want to minimize it?

2. What do the following symbols represent, and what are their shapes? (Assume n is
the dimensionality of the data and m is the number of datapoints):

• w
• ŵ
• X

• y

3. Rewrite the euclidean distance formula d(x, y) =
√∑n

i=1(xi − yi)2 using the L2-norm
||x|| given two vectors x and y. Do you notice any relationship between the L2-norm
and euclidean distance?

4. In your own words, what are the differences between Ordinary, Ridge, and LASSO
regressions?

5. Bonus: Solve for ŵ in the Ridge regression setting. Here is the equation:

argmin
w

n∑
i=1

(yi − ŷi)
2 + λ||ŵ||22

Your answer should be the closed form solution for Ridge regression and the proof
should be similar to the one given for ordinary linear regression.

3 Logistic Regression: Classification
3.1 Fundamentals of Logistic Regression
Logistic regression, despite its name, is a classification algorithm used to predict a
binary outcome—often represented as a “yes/no” or “1/0.” Unlike linear regression,
which predicts continuous values, logistic regression is designed to output the
probability that a given input belongs to a certain class. For instance, it can help
us predict if an email is spam or not based on various features.
The fundamental idea behind logistic regression is to use a sigmoid function to
transform the output of a linear equation (a combination of input variables) into a
probability between 0 and 1. The probability tells us how likely the input belongs
to one of two possible classes, usually denoted as 1 (positive class) or 0 (negative
class). The sigmoid function is defined as:

P (y = 1|x) = 1

1+e−(b+w⊤x)

19

Where:

• w is the weight vector, which defines the importance of each feature in the
input.

• b is the bias term, which adjusts the overall output of the function.

• e is Euler’s number, and the exponent ensures that the output is squeezed
between 0 and 1.

3.2 The Sigmoid Function and Its Role

Figure 3: A graph showing the sigmoid function.

The sigmoid function plays a crucial role in logistic regression because it takes any
input from the linear equation and converts it into a value between 0 and 1. This
value can be interpreted as a probability, helping us decide which class the input
most likely belongs to. Here’s how it works:

• If the result of the linear equation (b+ w⊤x) is a large positive number, the
sigmoid function outputs a value close to 1, indicating that the input most
likely belongs to class 1.

• If the result is a large negative number, the sigmoid function outputs a value
close to 0, indicating class 0.

• If the result is near 0, the sigmoid outputs a value close to 0.5, meaning the
input is equally likely to belong to either class.

This probability can then be used to classify the input: if the probability is greater
than 0.5, we predict class 1, and if it is less than 0.5, we predict class 0.

20

3.3 Training with the Log-Likelihood Loss
To make logistic regression work effectively, we need to find the best values for the
weights w and bias b. This is done by minimizing the log-likelihood loss
function. This function measures how well the model’s predicted probabilities
match the actual class labels. By adjusting the weights and bias to minimize this
loss, we ensure that the model produces the most accurate predictions.
During training, the model learns to minimize this loss by using optimization
techniques like gradient descent. This ensures that the weights are fine-tuned to
give the highest probability for the correct class as often as possible.

3.4 Extensions to Multiclass Classification
While logistic regression is primarily used for binary classification, it can be
extended to handle multiple classes through methods such as one-vs-rest (OvR).
In this approach, we train multiple logistic regression models, each one responsible
for distinguishing whether an input belongs to one particular class or any of the
others. The model with the highest probability ultimately decides the final class
label.

3.5 Why It’s Called “Regression”
The term “logistic regression” comes from its similarity to linear regression.
Both methods start by calculating a linear combination of the input features.
However, while linear regression outputs continuous values, logistic regression uses
the sigmoid function to turn these values into probabilities, which are used for
classification tasks. This difference is crucial to understanding why logistic
regression is a classification algorithm despite having “regression” in its name.

Synthesis Questions:

1. How does the sigmoid function play a role in making Logistic Regression a classification
algorithm?

2. For the algorithm to say that the input is equally likely to be from either class, what
must have b+ w⊤x have been?

21

4 K-Means Clustering: Unsupervised Learning
4.1 Introduction to Unsupervised Learning
In contrast to supervised learning, which learns from labeled data, unsupervised
learning operates on unlabeled data and aims to find hidden patterns or
structures within it. One powerful method used in unsupervised learning is
k-means clustering. This algorithm attempts to group data points into k
clusters, where each cluster contains points that are similar to each other. Unlike
supervised methods where there is a clear “right answer”, the objective here is to
let the algorithm uncover these clusters on its own.

4.2 How K-Means Clustering Works
At its core, k-means clustering is about finding the best way to group data points.
This process involves iteratively assigning data points to clusters and then
recalculating the center of each cluster, known as the centroid. The idea is to
minimize the distance between data points and their corresponding centroids, so
points within a cluster are more similar to each other than to points in other
clusters.
The process of k-means clustering can be broken down into the following steps:

• Step 1: Initialization. The algorithm begins by randomly selecting k initial
cluster centroids from the dataset. These centroids act as the starting points
for the clusters.

• Step 2: Assignment. Each data point is assigned to the nearest centroid
based on a distance metric, typically Euclidean distance. This forms k clusters
of data points, with each point belonging to the cluster whose centroid is
closest.

• Step 3: Update. Once the points are assigned to clusters, the centroids of
the clusters are recalculated. The new centroid is the mean of all the data
points in the cluster.

• Step 4: Repeat. Steps 2 and 3 are repeated until the centroids no longer
move significantly, or the cluster assignments do not change. This indicates
that the algorithm has converged.

The goal of this process is to minimize the sum of squared distances between each
data point and its cluster’s centroid. This ensures that points in the same cluster
are as close to each other as possible.

22

4.3 Minimizing Within-Cluster Distance
In k-means clustering, the objective is to reduce the within-cluster variance, or
in simpler terms, the total distance between the data points and the centroid of
their assigned cluster. The function to minimize is called the sum of squared
errors (SSE), which measures how far the data points are from their respective
cluster centroids:

SSE =
k∑

j=1

∑
xi∈Cj

∥xi − µj∥2

Where:

• xi represents a data point,

• µj is the centroid of cluster j,

• Cj represents the set of points assigned to cluster j,

• ∥ · ∥2 is the squared Euclidean distance.

By minimizing the SSE, k-means clustering ensures that data points within the
same cluster are tightly packed around their centroid, making the clustering
meaningful.

4.4 Choosing the Number of Clusters
A critical decision in k-means clustering is determining the value of k, or how many
clusters the data should be divided into. Often, this is not known in advance, so
techniques such as the elbow method are used. In the elbow method, the SSE is
calculated for various values of k, and the results are plotted. The “elbow” point on
the plot represents the optimal number of clusters—beyond this point, increasing k
provides diminishing returns in terms of reducing SSE.

23

Figure 4: An example of a graph showing SSE vs. k, and the elbow that can be used to pick the
optimal k.

Another method to determine k is by using the silhouette score, which evaluates
how similar a data point is to its assigned cluster compared to other clusters.
Higher silhouette scores indicate better-defined clusters.

4.5 Limitations of K-Means Clustering
While k-means is an effective clustering algorithm, it comes with several limitations:

• Sensitivity to Initialization. The algorithm is highly sensitive to the initial
placement of the centroids. Poor initial choices can result in suboptimal
clusters or even cause the algorithm to converge to a local minimum. To
address this, a more refined initialization method, K-Means++, is often used
to improve the initial centroids.

• Fixed Number of Clusters. K-means requires that k be defined ahead of
time, which might not always be clear from the dataset. This adds complexity
to its usage.

• Sensitivity to Outliers. K-means clustering can be significantly impacted
by outliers. Since the algorithm seeks to minimize distances, outliers (data
points far from the rest of the data) can disproportionately affect the cluster
centroids.

Despite these limitations, k-means remains a widely used and powerful clustering
technique for discovering patterns in data, particularly when the data is
well-structured and the number of clusters is approximately known.

24

Synthesis Questions:

1. Define “Unsupervised Learning” and how it is different than “Supervised Learning”.

2. What is a centroid? How is it calculated?

3. If the calculated centroids do not move very much after a few iterations, what does
this indicate?

4. If you have n points to cluster, what value of k will give the lowest SSE no matter how
the points are formed? (Hint: It’s kind of a cheap, degenerate case!)

5. Why do you think k-means clustering is sensitive to centroid initialization?

5 K-Means vs. K-Medians Clustering
5.1 Introduction to K-Medians Clustering
While k-means is a widely used method for clustering, an alternative approach is
k-medians clustering, which offers a different way of calculating cluster centers.
Instead of using the mean of the data points to define the cluster center as k-means
does, k-medians calculates the center as the median of the data points in the
cluster. This key difference makes k-medians more robust, particularly in the
presence of outliers, as the median is less sensitive to extreme values.
In k-medians, the objective is to minimize the sum of absolute differences
between data points and the cluster center, rather than the sum of squared
distances. This approach results in cluster centroids that are less influenced by
anomalous data points, providing a more stable representation of the typical cluster
member in datasets with noisy or skewed distributions.

5.2 K-Medians Use Cases
K-medians clustering is especially useful in situations where the data contains
significant outliers or when using non-Euclidean distance metrics. Unlike k-means,
which can be overly influenced by extreme values due to its reliance on the mean,
k-medians offers a more robust solution by focusing on the median. For example,
if a dataset contains several unusually large or small values that could distort the
cluster centroid under k-means, k-medians will provide a more accurate and
representative clustering result.
K-medians is typically used when minimizing the sum of absolute differences
between points is more meaningful than minimizing squared differences, such as in
scenarios where data points vary widely in scale or when outliers are frequent.

25

While k-medians may be less common than k-means in practice, it proves highly
effective when the assumptions behind k-means (such as normal distribution of
data or minimal outliers) do not hold.

5.3 Key Differences Between K-Means and K-Medians
The fundamental difference between k-means and k-medians lies in how they
compute the cluster centroids and the distance metrics they use. K-means
calculates the centroid as the mean, minimizing the sum of squared Euclidean
distances. In contrast, k-medians uses the median, minimizing the sum of absolute
distances (often referred to as Manhattan distance).
Here are key distinctions between the two methods:

• K-Means: More sensitive to outliers because the mean is influenced by
extreme values. It is best suited for datasets where the distance between
points is naturally measured using Euclidean distances, and when the data
does not contain many outliers.

• K-Medians: More robust to outliers, as the median remains stable even in
the presence of extreme values. It is better suited for datasets with skewed
distributions or where minimizing absolute differences is a priority.

Figure 5: An image comparing and contrasted the clusters created from k-means and k-medians
methods.

The choice between the two methods depends heavily on the nature of the dataset.
K-means is computationally more efficient but may produce distorted clusters in
datasets with many outliers, whereas k-medians offers a more resilient solution for
datasets with irregularities or noise.

26

Synthesis Questions:

1. Give a concrete, real-world example of a situation where k-means clustering is a better
choice than k-medians clustering

2. Give a concrete, real-world example of a situation where k-medians clustering is a
better choice than k-means clustering

3. Give a concrete, real-world example of a situation where neither of these algorithms
will work well

6 Other ML Concepts
6.1 Bias-Variance Tradeoff
This is a concept that doesn’t really fit anywhere else, but is incredibly important
to talk about. The bias-variance tradeoff heavily rates to over and underfitting.
Overfitting is when you have a model that fits the data it is trained on too well.
This could come about by, for example, trying to fit a very high-order polynomial
curve to data that is linearly correlated. Instead of creating a line of best fit
through the data, a sufficiently complex polynomial could just weave through every
point in the graph. This would result in 0 SSE, but terrible performance on
real-world data after the model is deployed. This is because real data is noisy, and
a sufficiently complex model will fit to that noise because doing that technically
minimizes SSE. Underfitting is the exact opposite problem. Say you had some
synthetic data that took the shape of a parabola, but tried to fit a straight line to
it. No matter how many training examples you provide, your model is not complex
enough (you can also say it is not expressive enough) to fit to the curve well.

An example of a very basic, not-so-expressive linear model:

y = w1x1 + b

An example of a very expressive 5th-degree polynomial model:

y = w1x1 + w2x
2
1 + w3x

3
1 + w4x

4
1 + w5x

5
1 + b

A rarer, but still useful sinusoidal model:

y = w1sin(w2x1 − w3) + b

When people talk about the bias-variance tradeoff, they are essentially referring to
over and under fitting, but are being a little more specific. Bias refers to how close

27

the model line is to the “true” underlying curve. You can generate synthetic data
for a line by generating points from some y = mx+ b, but then adding a noise term
ϵ ∼ N(0, 1) to each point. If your underlying model fits to the generating
y = mx+ b but ignores the noise introduced with ϵ, then it has low bias. Variance
is a bit more complicated, but it essentially concerns the robustness of the model.
If you were to add or remove a few points from a dataset, then a model with the
appropriate level of expressivity should not change its learned coefficients by much.
For example, if you had data correlating age with height, you shouldn’t expect
removing one or two points to affect the underlying correlation. A overly expressive
model would, however, completely refit to swerve through all the points in a new
way which drastically changes the coefficients. Variance measures how inconsistent
the model is across different training subsets. When fitting ML models, you want a
model that minimizes both bias and variance. To do this, you must pick a ML
model that has enough expressive power to capture underlying trends, but is not so
expressive that it suffers from high variance errors.

Figure 6: An illustration visualizing different balances between bias and variance for model fitting.

6.2 Convexity
Convexity is important for ML models as well. So far, the linear models we have
shown you are all convex. What this means is that we can guarantee we are able
to converge upon an optimal set of weights if we train enough. You can think of
optimizing a linear model like rolling down a valley. The lower you are on this
valley, the lower the SSE. You take steps by fitting the model to training examples.
Once you reach the bottom of this valley, you are satisfied as you cannot get any
lower. Moving in any direction either increases your SSE or keeps it the same. If
you are sure that the function you are optimizing is convex, then you can rest
assured that you have found an optimal set of weights. However, if the function you
are optimizing on is non-convex, there is a chance that a lower valley exists

28

somewhere on this SSE landscape, but you can never be 100% certain!

Figure 7: An illustration visualizing a convex function and a non-convex function. Also shown is
the problem that comes with optimizing non-convex functions: getting stuck at a local minima.

Figure 7 illustrates this point. For the non-convex function, once you have reached
a minimum, you don’t know if it is a local minimum or a global minimum. However,
in a convex function, you can be certain you have found a global minimum.
Knowing that you are working with a convex optimization problem (i.e. a linear
model) gives you the peace of mind in knowing that with enough training you will
find weights that fit the data as well as possible for the model’s complexity class.

Synthesis Questions:

1. What does “expressivity” of a function mean?

2. How do over and underfitting relate to bias and variance?

3. If a model gives low bias and variance while fitting to a dataset, is it a good choice?

4. Why is knowing that your optimization problem is convex useful/good?

5. Bonus: Are either k-means or k-medians convex optimization problems? Give rea-
soning (does not need to be in proof form)

7 When to Use Machine Learning Algorithms
Machine learning models are widely used in applications like image recognition,
natural language processing, and predictive analytics. However, selecting the right
algorithm for a task is essential. Simple models like linear regression may suffice for
tasks with linear relationships, while more complex tasks (like image classification)
often require more advanced models, such as neural networks.

29

Furthermore, unsupervised learning methods like k-means clustering are valuable
when you want to find hidden patterns in the data without labeled outcomes.

8 Conclusion (ML)
This section covered the fundamental concepts of machine learning, with a focus on
supervised learning (linear regression) and unsupervised learning (k-means
clustering). We also introduced important concepts like regularization (L1 and L2),
the bias-variance tradeoff, and convexity. Additionally, we discussed the differences
between k-means and k-medians clustering and clarified why logistic regression is a
classification algorithm. Understanding these basics is crucial as machine learning
continues to influence more of our lives. These concepts are also the most applicable
in day-to-day ML, the backbone of modern systems. More often than not, Occam’s
Razor holds true: Don’t use more than necessary and overcomplicate things.

30

DEEP LEARNING

31

9 Introduction to Neural Networks
9.1 Fundamental Structure
To understand deep learning (DL) on a deeper level, we must first look closer at
neural networks. They are ubiquitous in the space of DL and are the backbone or
an integral part of most modern DL model architectures. As such, understanding
what they are and where their “power” comes from is very important for both
reasoning about the capabilities of DL systems and designing your own.

Neural networks are learning algorithms loosely modeled after the brain. We will
expand on this connection further in the future, but for now here are the basics:
Neurons in the brain have lots of connections to other neurons, and can pass
information between each other using electrical potentials shot down a long section
of the cell called an axon. We heavily abstract this complex biological process by
representing it as a directed graph. We represent the neurons as nodes, and the
axons as edges.

The figure below shows how a graph like this might appear.

Figure 8: A visualization of neural networks

As you can see in Figure 1 above, there are different levels or layers of neurons
(pink, then yellow, and finally blue). That is a key characteristic of deep learning, a
learning algorithm that uses hierarchical layers to process information.

The primary layer of neurons is called the input layer - this is the layer where our
input is read in as a vector. So if, for example, our input was an image (which is
common as deep learning algorithms are often used for image classification), the
image would be reconfigured into a large single-column vector, where each entry
would represent a pixel in the image. The image would be, technically, entered into
the model as one long vector of pixels, and this vector would be entered into the

32

input layer of the model.

Figure 9: Visualization of how images are converted into vectors

Next are the hidden layers, which are yellow in the first image. There are usually
multiple hidden layers in deep learning models, depending on how much processing
the model must do before it can make a conclusion. The hidden layers are called
“hidden” because we often don’t understand what happens in here. Trying to
interpret the vectors that exist in these layers usually results in nonsense. The field
of explainable AI (XAI) has done lots of work here and there do exist tools to
probe the hidden layers to understand what the model is “thinking” (I use the term
thinking very loosely here). However, without these tools, the middle of the
network is considered a “black box” - a term you may have come across before.

Finally, the output layer. The neural network calculates a probability for each
possible outcome (for example, the input being an image of a dog) and fills out the
output layer with values (blue in Figure 1). The output layer shows the algorithm’s
conclusions for the probabilities of each possible outcome and using these
probabilities, the computer chooses an outcome. For classification neural networks,
all the probabilities in the outcome layer will always add up to 1. Since there is one
probability calculated for each outcome, the number of nodes in the output layer
will be the number of possible outcomes.

33

A small aside: Image inputs are the most common introduction to neural networks,
because the “Hello World” project of deep learning, or the most introductory deep
learning project, concerns image classification. It is important to note, however,
that we could instead input “features” of some object we wish to classify or regress
on. For example, we could provide the neural network with a vector consisting of
the first index being the number of legs of an animal, the second index the height,
the third a boolean indicating if it is a carnivore, etc. So, why don’t we?

A large reason neural networks are so useful is that they don’t require too much
“feature engineering” to get good results. Before the proliferation of the neural
network, people would write complex algorithms to extract some features from an
image. Where and how large the eyes of an animal are, an estimated number of
legs, its edge contours, and many more complex features. They would then feed
these vectors into a more traditional classification algorithm like a decision tree.
Neural networks are powerful enough that we can just cut up the raw
image and throw it in. No complex engineering required! This is why
images are used in beginner projects: to demonstrate the power of these networks.
However, this comes at the cost of efficiency. Neural networks often require orders
of magnitude more data to train on, and also a lot more compute. The reasons for
this will be explained in later sections.

9.2 Flow of Information
Now that you understand the different layers of a neural network, let’s see how the
values in the input layer travel through the edges to get to the output layer. For
ease of understanding, we are using a very simplified and weak version of a neural
network, which we will improve in later sections.

Weights: Zoom in one of the neurons in the input layer, and see how it connects
to the next hidden layer. You will see one arrow pointing to each of the yellow
neurons. Each of these arrows has a number attached to it. We call these numbers
“weights” because they determine how much information from the previous node
enters the next node. If you have a node with value a connected to node z with
weight w, Node z takes on the value of a times w. If w is very large or small, then
this will heavily influence the value in z. If w is closer to 0, then z will not be
influenced much by the value in a. You will also notice that one yellow neuron has
multiple arrows going into it. This means multiple different neurons in the previous
layer are sending their information over to this one. you just sum up the
contributions. Nothing fancy there!

34

Biases: Each neuron has a “bias” term that is added to its value. It can be
positive or negative and make the neuron more “sensitive” to input. For example, a
bias of +5 means that even if the values coming in from the previous layer to this
neuron are generally negative, it is counteracted with a positive bias. Vice versa for
negative biases.

Let’s write this all out:

Have the three pink neurons be a1, a2, a3. Only consider the top yellow neuron, and
call it z. The arrow connecting ax to z is called wx. The bias for the neuron z is b.

Figure 10: An illustration of weights and biases connecting the first layer of our neural network to
the first neuron of the second (hidden) layer.

z = (w1a1 + w2a2 + w3a3) + b

That is how information is propagated! This process is repeated for every neuron in
the hidden layers, all the way out to the output layer. However, this is not done
sequentially as shown above, but through the use of matrices.
The dot product of two vectors of the same dimension a, b is written as a · b, and
when expanded becomes:

n∑
i=1

aibi

35

Where a, b ∈ Rn. This is just saying that the vectors both have n elements in
them. We can rewrite the equation for z as:

z = w · a + b

We can add further subscripts to allow us to consider the whole hidden layer
instead of one yellow neuron. Have the four yellow neurons be z1, z2, z3, z4. wx

would then be a vector of the weights connecting the previous layer to zx. We also
add a subscript to the bias term to indicate which neuron in the hidden layer it
belongs to. We now have, for the entire hidden layer:

z1 = w1 · a + b1

z2 = w2 · a + b2

z3 = w3 · a + b3

z4 = w4 · a + b4

Using the properties of matrix multiplication (see here if you need a refresher), we
can simplify this further! We can define a weight matrix W as a 4 × 3 matrix (4
rows, 3 columns):

W =

w1

w2

w3

w4

 =

w1

1 w1
2 w1

3

w2
1 w2

2 w2
3

w3
1 w3

2 w3
3

w4
1 w4

2 w4
3

Making z a vector holding all zx values and b a vector holding all bx values, we can
write:

z = Wa + b
With the dimensions being: z ∈ R4×1, W ∈ R4×3, a ∈ R3×1, and b ∈ R4×1. Based
on the architecture of your neural network, these numbers will change in expected
ways.

9.3 The Perceptron and XOR
We just wrote out the equations that define how information flows between two
layers in a neural network. Well, if we stop here and don’t add any more layers, we
come up with what is a perceptron. Understanding the limitations of two linear
layers is crucial for appreciating the power of many nonlinear layers. Let us create
a perceptron that accepts 2 inputs and outputs one.

36

https://www.mathsisfun.com/algebra/matrix-multiplying.html

z = Wa + b
With the dimensions being: z ∈ R1×1, W ∈ R1×2, a ∈ R2×1, and b ∈ R1×1. Since
the dimensions are so small, we can just do away with the compact matrix form:

z = w1a1 + w2a2 + b

a1 and a2 become x and y since we are in the Cartesian plane.

z = w1x+ w2y + b

Subtract b:

z − b = w1x+ w2y

Since z and b are constant, we have essentially written the standard form of a line!
w1, w2, and b define the line. Solving for z tells you where the point (x, y) lies in
relation to the line. If z is positive, the point lies above the line. 0 for on the line,
and negative for below. Therefore, the classification boundary a perceptron
draws is linear.
What is this all for? Let’s consider a famous problem: The XOR Problem. We
construct a “dataset” from the definition of the XOR (⊕) boolean function. The
truth table for it can be seen below:

X Y X ⊕ Y
0 0 0
0 1 1
1 0 1
1 1 0

We can consider X and Y as Cartesian coordinates and X ⊕ Y as the “class” of the
point. If this is plotted, you will quickly notice that there is no way to draw a line
that cleanly separates the classes. In other words, the XOR classification problem is
not linearly separable.

37

Figure 11: Illustration of the XOR function, and how you cannot draw a single line that separates
the classes (white and black dots).

XOR is a simple boolean operation, as we move to complex problems like animal
classification and speech recognition, how can perceptrons hope to solve them, even
if we blow up the number of weights and nodes? You may say that we can add
more layers, which can be represented as:

z1 = W 1a + b1

z2 = W 2z1 + b2

z3 = W 3z2 + b3

With superscripts just denoting what layer we are processing. Collapsing this set of
equations through substitution:

z3 = W 3(W 2(W 1a + b1) + b2) + b3

Distribute:

z3 = W 3W 2W 1a +W 3W 2b1 +W 3b2 + b3

Here comes the issue with more layers. The term W 3W 2W 1a can simply be
collapsed into a single transformation Wa! The decision boundary is still linear,
and can therefore never “solve” a problem that is not linearly separable. The terms
W 3W 2b1 +W 3b2 + b3 do not change this fact. Applying multiple linear
transformations to a vector is the same as applying the product of those
transformations all at once. The associative property of matrix multiplication
totally allows this, since

(AB)C = A(BC)

38

Here is another way of looking at the above equation. See how the matrices can
collapse into one?

z3 = (((W 3W 2)W 1)a) +W 3W 2b1 +W 3b2 + b3

Therefore we are back at square one as we were with two layers, just with more
bias terms... So how do we make it so that we can draw more than just lines in our
spaces to solve the XOR problem? The answer lies with nonlinearities (shocker!).

Synthesis Questions:

1. Define the following words:

• Neuron
• Layer
• Hidden Layer
• Weight
• Bias

2. If you have a neural network with an input dimension of 3, a hidden dimension of 4,
and an output dimension of 1, then what would:

• The dimension of W between the input and hidden layers be?
• The dimension of W between the hidden and output layer be?
• The dimension of b for the hidden layer?

3. Explain in your own words why a linear classifier (like a perceptron) cannot be used
to solve the XOR problem

10 Non-Linearity and Activation Functions
10.1 Introducing Nonlinearities
Let’s take a step up from the XOR problem and look at something arguably more
complex: Image classification. Image classification, especially with categories as
specific as ‘dog’ or ‘cat’, is very challenging. It requires a level of detail and
processing that many machine learning algorithms cannot achieve, especially linear
algorithms, where a change in the input is directly proportional to the
corresponding change in output. So, to tackle complex tasks such as image
classification, neural networks, and deep learning models need to employ
non-linearity. In non-linear models, changes in input can cause varying levels of
change in corresponding output. Going back to our dog example, if we change the

39

size of a dog’s ear, we want that to have little impact on the model’s conclusion.
But if we change how the dog’s fur appears, that should have a much larger impact.
Non-linearity can help us achieve this. To introduce non-linearity to neural
networks, models implement activation functions.

Activation functions are applied after computing the raw values to populate the
nodes of a neural network layer. These raw outputs are called logits. Recall Figure
8. In the below equation, the values in the vector z would be the logits of the
hidden layer:

z = Wa + b
This is NOT immediately what is passed to the final layer. Instead, we first apply a
non-linear function to the logits. We can refer to this function as ϕ(·), and we will
give specific examples of this function later. Therefore, a multi-layer neural
network (or in other words, a non-linear multi-layer perceptron) can be written out
as follows:

z1 = ϕ(W 1a + b1)

z2 = ϕ(W 2z1 + b2)

z3 = ϕ(W 3z2 + b3)

Now let’s collapse this equation, and see if we run into the same problem we had
with a multi-layer linear perceptron:

z3 = ϕ(W 3ϕ(W 2(ϕ(W 1a + b1) + b2) + b3)

The matrices can no longer be collapsed into just one, meaning that we can draw
more complex boundaries between classes, or find more complex patterns within
regression tasks. Using activation functions to allow for non-linearity gives deep
learning and neural network models the strength to find solutions for complex
tasks. A fundamental concept in the theory of neural networks, called the
Universal Approximation Theorem, states that a neural network with at least
one hidden layer with a finite number of neurons can approximate any continuous
function to any level of accuracy with the use of certain activation functions. So,
using non-linearity, neural networks can predict almost anything and do so
accurately. Of course, we would also need enough data and compute to train this
arbitrarily large model.

40

10.2 Common Activation Functions

Figure 12: Plots of various activation functions

One commonly used activation function is the sigmoid function. This function
squashes inputs into the range between 0 and 1. It is useful in binary classification
tasks but can cause issues like vanishing gradients in deeper networks (more on this
later). The formula, where x is a given neuron’s output is:

σ(x) = 1
1+e−x

The hyperbolic tangent activation function, or tanh, squashes inputs between -1
and 1. It is zero-centered, which makes it easier for optimization compared to the
sigmoid function. The tanh formula is:

tanh(x) = ex−e−x

ex+e−x

Another activation function, Rectified Linear Unit or ReLU, outputs the input
if it’s positive, and zero otherwise. It is computationally efficient and helps alleviate
the vanishing gradient problem by allowing gradients to flow when the input is
positive. ReLU is written as:

ReLU(x) = MAX(0, x)

There is also another form of the ReLU activation function called Leaky ReLU
that allows a small, non-zero gradient when the input is negative, helping prevent
the issue of ”dead neurons” (neurons that never activate). Leaky ReLU looks like:

f(x) =

{
x, if x > 0

0.01x, if x ≤ 0

41

Synthesis Questions:

1. Define the following words:

• Activation function
• Logits

2. Why are activation functions important for increasing the power of a neural network?

3. In your own words, what is the Universal Approximation Theorem?

11 Backpropagation
11.1 Loss Functions
How does a neural network ‘learn’ using training (a.k.a labeled) data? It uses a
process called backpropagation. This process adjusts the weights assigned to
connections between neurons and the biases assigned to nodes to improve the
algorithm’s accuracy. Imagine for a moment, that we are working with deep neural
network classifying images as dog or cat. In this case, we will want to assign a
higher weight to the feature ‘long tongue’ because that is an important feature in
determining whether something is a dog or a cat. To implement this functionality,
the model will have a hidden neuron that “lights up” (has a high value) when the
input animal image has a long tongue. This will significantly sway the model’s
decision-making process, increasing the probability of the image being a dog. In
comparison, a neuron relating to the feature ‘fur color’ might want to have a
smaller weight connecting it to the next layer, because cats and dogs have similar
fur colors and this feature isn’t as important in differentiating between cats and
dogs. The backpropagation process will slowly adjust these weights to be this way,
leading to an excellent classifier.

So how does backpropagation determine which weights and biases to manipulate?
To understand that, we have to discuss loss functions. A loss function is used to
measure how far off the network’s predictions are from the actual target values. It
provides a numeric value that represents the error in the prediction. Generally,
higher loss means the model did not perform well, and vice versa. The goal of
backpropagation is to reduce this loss by adjusting the weights in the network. A
common example of a loss function is Mean Squared Error (MSE), which is
often used for regression tasks. The formula for MSE is:

42

L =
1

N

N∑
i=1

(yi − ŷi)
2

where L is the loss, or the model’s error, yi is the target-value (also known as the
correct answer or label) for the specific input, ŷi is the value the model
predicted/guessed, and N is the number of training examples shown to the model.
You may notice that this version of the MSE loss function works only with scalar
outputs from a neural network. There are versions of MSE that can handle
multiclass output. However, it is generally accepted that if you have a multiclass
classification problem, a better loss function to use is Cross-Entropy Loss (or log
loss). This loss function measures the difference between two probability
distributions. The formula for Cross-Entropy Loss is:

L = − 1

N

N∑
i=1

K∑
k=1

yik · log(ŷik)

where K is one of the outcomes or classes, yi is the actual probability of the given
input belonging in class K, and ŷi is the probability the model has assigned to class
K for the given input.

Calculating these loss metrics is the final step of what is called the forward pass.
This is what we have studied so far. After this begins the backward pass or
backpropagation.

11.2 Derivatives and Gradients
Before we delve into the semi-convoluted math behind backpropagation, we should
revisit some concepts from calculus. Take a look at the equation and associated
graph below:

f(x, y) = z = x2 + y2

43

Figure 13: Illustration of the function f(x, y) = x2 + y2

The gradient of a multivariate function (denoted in this case as ∇f(x, y) or ∇z)
points you in the direction of steepest ascent of a function given a point. To
calculate the gradient of a function, you simply take the partial derivative of the
function with respect to each variable and represent the derivatives as directions of
a vector. Here is an example using f(x, y) = z = x2 + y2:

∇z =

[
∂z
∂x
∂z
∂y

]
Solve for ∂z

∂x
:

∂

∂x
z =

∂

∂x
(x2 + y2)

∂z

∂x
= 2x

Solve for ∂z
∂y

:

∂

∂y
z =

∂

∂y
(x2 + y2)

∂z

∂y
= yx

∇z =

[
2x
2y

]

44

We now have a way to, given any point on the function, determine which direction
to move to increase z the most. If we plug in (1, 1), we get[

2
2

]
If we plot this as a vector on our previous graph:

Figure 14: Illustration of the function f(x, y) = x2 + y2, with a vector showing the direction of
steepest ascent from point (1, 1)

So how does this relate to neural networks? Well, we can simply think of a neural
network as a large multivariate function, with the variables in question being the
weights. Think about it: we have a loss function that we want to reduce. We can
imagine this as z in the previous example. We want to find out how to change the
weights to reduce the loss function the quickest (direction of steepest descent). So,
we just flip the idea of a gradient on its head. If we can find ∇WL (the gradient of
L with respect to all weights), we can adjust the weights to minimize the loss!

Wnew ← Wold −∇WL

Calculating this by hand is near impossible, and nobody expects you to. There are
tricks we can use to calculate gradients in chunks rather than taking 100’s of
derivatives.

45

11.3 Gradient Flow
The model first calculates the derivative of the loss with respect to ŷi, since ŷi is
the output of the model. For ease of understanding, we will use MSE loss:

L =
1

N

N∑
i=1

(yi − ŷi)
2

∂

∂ŷ
L =

∂

∂ŷ

1

N

N∑
i=1

(yi − ŷi)
2

∂L

∂ŷ
=

1

N

N∑
i=1

−2(yi − ŷi)

This value is directly calculable, and it is propagated backward, starting “gradient
flow”.

Lets say ŷi = σ(z). Recall that σ(·) represents the sigmoid activation function.
This therefore represents the activation function applied to the logits of the output
neuron.

Also define z = f(w1, w2, ...wn) =
∑n

i=1 aiwi + b. Recall that ai is the output of
neuron i from the previous layer. This therefore represents the calculation of the
output neuron’s logits using the outputs from the neurons of the previous layer.

How can we calculate ∇WL =

[
∂L
∂w1

, ∂L
∂w2

, ..., ∂L
∂wn

]
? Using the chain rule, we can

rewrite any ∂L
∂wx

as:

∂L

∂wx

=
∂L

∂ŷ
· ∂ŷ
∂z
· ∂z

∂wx

where ∂L
∂wx

is the gradient of the loss with respect to an arbitrary weight wx, ∂L
∂ŷ

is
the gradient of the loss with respect to the predicted output, ∂ŷ

∂z
is the gradient of

the output with respect to the weighted sum z, and ∂z
∂w

is the gradient of the
weighted sum with respect to the weight w.

We already have ∂L
∂ŷ

as shown above. ∂ŷ
∂z

is calculated as such:

ŷi = σ(z)

46

∂

∂z
ŷi =

∂

∂z
σ(z)

∂ŷi
∂z

= σ′(z)

σ′(z) is just the derivative of the sigmoid. This is easy to compute. Calculating ∂z
∂wx

is a little harder, as we have considered wx as an arbitrary weight. Let us calculate
the partial derivative with respect to just w1. Calculating the other w follows
easily.

f(w1, w2, ..., wn) = z =
n∑

i=1

aiwi + b

∂

∂w1

z =
∂

∂w1

n∑
i=1

aiwi + b

∂z

∂w1

= a1

It follows that ∂z
∂w2

= a2, ∂z
∂w3

= a3, and so forth. Therefore we can say that
∂z
∂wx

= ax. We can plug all these results into our chain rule:

∂L

∂wx

=
∂L

∂ŷ
· ∂ŷ
∂z
· ∂z

∂wx

∂L

∂wx

= (
1

N

N∑
i=1

−2(yi − ŷi)) · (σ′(z)) · (ax)

For deeper neural networks with many layers, this computational graph becomes
much more complex. However, the idea stays the same: Find the gradients of the
loss with respect to the weights of each layer. Do this by passing gradients
backward through the network. Calculating the gradient with respect to the biases
is done the same, and even simpler! Performing gradient descent is then as simple
as the equation from before, with a small constant added to ensure these changes
are incremental and not massive:

Wnew ← Wold − λ∇WL

This constant λ is called the learning rate, and we will discuss its significance
later. Congratulations, you know understand basic gradient descent!

47

11.4 Optimizers and Learning Rates
While gradient descent is a common optimizer and is easy to follow
mathematically, it is unfortunately very expensive computationally and can be
slow. Stochastic Gradient Descent (SGD) is a similar, more efficient,
optimizer. SGD speeds up this process by updating weights after computing the
gradient on a small, random batch of data, rather than the entire dataset. Another
popular optimizer is Adam. Adam combines the benefits of both SGD and another
optimization technique called Momentum, which helps the optimizer move faster
by incorporating information from past gradients. Adam also adapts the learning
rate for each weight based on how the gradients change, making it efficient for
handling noisy gradients and sparse data. Many people use Adam because it
performs well across a wide range of tasks. It is essential to understand that Adam
fine-tunes the learning process dynamically, making it more flexible than standard
SGD. A deep dive into how each of these optimizers work is a bit beyond the scope
of this article, but is interesting and I suggest you do some independent research!

A common thread between all of these optimizers is that they share one parameter
in common: the learning rate. This is a scaling factor applied to the calculated
gradient before it is used to adjust the weights. The size of this scaling determines
how big of a “step” the weights take while traversing the “loss landscape”.
Optimizer classes in most deep learning libraries (e.g. PyTorch, Tensorflow) have
defaults that work well for each of the different optimizers. Starting here is usually
a good idea, because a learning rate that is too small will take way too long to
converge, while a large learning rate may not converge at all! For an illustration of
this, see Figure 15.

48

Figure 15: A demonstration of how different learning rates affect convergence of a loss function (in
this graphic represented as J(θ).

Synthesis Questions:

1. Define what the purpose of a loss function is

2. What are the different use cases for Mean Squared Error vs. Cross Entropy Loss?

3. What is the difference between a derivative and a gradient?

4. Find the gradient for this function at (3, 2, 1):

f(x, y, z) =
2

3
x2 + y2 − 2y + z4 − 4

3
z3

5. Find the derivative of the sigmoid (σ) function and plot it. Why might this activation
function prevent gradients from flowing back through the network during the backward
pass?

6. Why might the “steps” taken by SGD not be as directly in the most optimal direction
compared to GD?

12 Regularization
We will now cover an incredibly important topic for deep learning:
regularization. In ML, regularization often is applied in the form of adding a
norm to the loss function, encouraging weights to reach smooth (L2) or sparse (L1)
optima. Regularization also exists in deep learning to prevent overfitting, but
comes about in more interesting and varied ways. We will quickly cover two

49

common ones in shallow detail.

12.1 Dropout
Dropout: During each forward pass, a certain fraction of neurons are temporarily
dropped from the neural network. The connections they have to other neurons are
totally ignored and they are not used in the forward nor the backward pass for that
specific training example. In other words, dropped neurons have no direct bearing
on the output and their associated weights will not change from that training
example. This only occurs at train time. At test time, all neurons are allowed to be
used by the network all the time. See Figure 16 for a visual representation of this
process.

Figure 16: Visualizing dropout in a fully connected neural network

Why would we do this? Well, if a network is allowed to use all of its neurons all of
the time, there is no guarantee that the network will effectively use all the neurons.
Perhaps due to a strange initial weight configuration, the random seed, or some
other factor, the network will only use a very small subset of its available power.
Many neurons will end up going essentially unused and their weights meaningless,
despite the resources being allotted to train them. This consolidation of
computation into a small portion of the network leads to much lower robustness.

Here is an analogy: a 10-armed robot is trained to pick up an apple from a desk.
The robot uses one of its arms at random, and only trains with that arm. Then
during test time, we bind the arm the robot used the most. Since the robot has not

50

learned how to use any of its other arms, it fails at a task it should very easily be
able to do. Dropout is like forcing the robot to pretend it has lost a few arms each
training example. It is then forced to use all of its arms, and gets good at picking
up the apple with any of them. This robot is now much more robust when deployed
into the real world, as small perturbations do not totally handicap it.

One small detail is that once training time is over, all neurons have their weights
scaled by 1 minus the dropout rate. Therefore, the expected distribution of values
flowing from one layer to the next stays the same as it was during training time.

12.2 Batch Normalization
Batchnorm: Batchnorm, or batch normalization, is a very common technique
used to regularize neural networks and improve training efficiency. Batchnorm can
be thought of as an extra layer in a neural network with a few additional
parameters. Essentially, before information flows from one layer to the next, the
data is normalized across examples in the batch. Let’s break this down.

What is a batch? It is common to not just pass one example through a neural
network at a time, but many. Groups of 64, 1024, 4096, etc. training examples are
used at once before a backward pass is performed. Then what is normalization?
Within this aforementioned batch, examples are mean-shifted by a mean µ and
then divided by a standard deviation σ. This is normalization and it keeps the data
centered around (0, 0) and evenly varied. In addition, these µ and σ parameters are
slightly adjusted for each new batch by taking a moving average through each
previous batch. There are also additional “scale and shift” parameters represented
by γ and β respectively. As the network sees more and more examples, the β and γ
parameters are also slowly adjusted to find a scale and shift transformation to the
normalized data that improves performance. This is shown in the following series of
equations, where xi is a datapoint and m is the number of datapoints in a batch.

Estimating µ and σ for a batch:

µbatch =
1

m

m∑
i=1

xi

σbatch =

√√√√ 1

m

m∑
i=1

(xi − µbatch)

51

Updating the moving average:

µ = αµ+ (1− α)µbatch

σ = ασ + (1− α)σbatch

Normalize xi to x̃i using the moving average:

x̃i =
xi − µ

σ

Scale and shift before sending values to next layer:

xoutput
i = γx̃i + β

Mean-centered and evenly varied data allows gradient descent to descend the
weights smoothly down to a optimal minimum. If two features input into a neural
network were on wildly different scales (e.g. House price vs. number of bedrooms),
then optimization becomes clunky. Making a large shift in weights is necessary to
process highly varied housing prices, but this same shift negatively affects how the
network processes the more tame “number of bedrooms” feature since more precise
changes are needed. Normalization plus scale and shift removes this problem, and
thus batchnorm helps greatly with a network’s convergence.

Synthesis Questions:

1. In your own words, why does Dropout work?

2. Why do you think a moving average of µ and σ are useful for a network with batch
normalization layers if there are many batches to process?

3. Think of, or find online, a method of regularization within neural networks not dis-
cussed here. Write two to three sentences on how it works.

13 When to Use Deep Learning/Neural Networks
While we have shown the great power and ability of neural networks and deep
learning, with all this power comes great cost. Neural networks are power-hungry,
taking up significant computation power for all the processing they have to do.
They are a powerful tool and should be used with caution and respect. As our i2
president once said, don’t use a bomb to cut a sandwich. It is important to
know when to use them. Deep learning models are useful for image, audio, and
video classification or, in other cases, where non-linearity is necessary. Neural

52

networks also require considerable amounts of data for a decent accuracy. Only use
them when you have enough labeled data to properly train them on. In summary,
while neural networks offer unmatched capabilities for complex tasks like image and
audio classification, they are not always the most efficient tool. Sometimes a
simpler model will get the job done while using half the resources. The key is
understanding when their power is necessary and when a more lightweight solution
will suffice. Always choose the right tool for the job.

14 Conclusion (DL)
This section covered the fundamental concepts of deep learning, with a heavy focus
on neural networks. We also introduced important concepts like non-linearity and
backpropagation. We closed with an overview of regularization techniques used in
deep learning today. There is much more to deep learning we could not cover in
this article. Neural networks especially are heavily used in many fields; either in
larger deep learning architectures or as function approximators for some other goal.
Understanding how they work and how to train them is critical to evaluating these
systems.

53

COMPUTER VISION

54

15 Introduction to Computer Vision
15.1 What is Computer Vision?
Computer vision is a field of machine learning that focuses on enabling
computers and programs to ‘see’ images. ‘Seeing’, in this case, defines a computer’s
ability to recognize and understand objects in images, such as a program ‘seeing’ a
dog and labeling it as such. Computer vision is used in many ways, most commonly
utilized for object detection, image classification, and segmentation (a
process of breaking an image down to identify boundaries of objects and objects
themselves). We will primarily be covering where computer vision instersects with
deep learning, but do note that computer vision as a field has existed well before
deep learning and there are many aspects of the field that are more algorithm
based than AI based.

16 Convolutional Neural Networks
Now what machine learning algorithm is used for computer vision? That would be
Convolutional Neural Networks or CNNs. CNNs are designed to process
images and can either be found as independent models or as parts of other neural
networks. They can work as image pre-processors for other models, like multimodal
language models. Similar to how neural networks were designed to mimic brain
functionality, CNNs are designed to mimic a human’s visual processing system and
the brain’s visual cortex.

16.1 Convolutional Layer

Convolutional neural networks are structured as a series of layers, similar to neural
networks. The first layers are called the convolutional layers. Convolutional
layers apply a mathematical calculation to a section of an image to extract
information about the features in that image. Recall that a feature is an attribute
of interest, such as an ear, number of legs, presence of color, etc. It does this using
an object called a kernel. A kernel works like a sort of filter, amplifying the effect
of some pixels and minimizing the effect of others to try and draw out a feature.
For example, the kernel in the image below is attempting to extract an “ear”
feature from a section of the input image.

55

Figure 17: Illustration of feature extraction using kernel

The solution to the calculation is then placed back into a new, usually smaller,
matrix that will ultimately become a representation of where the features we are
searching for within the image exist. We call this a feature map. For example, if
there is an ear in the top left of an image, then an “ear” kernel applied to that
image will result in a feature map that has high values in the top left where the ear
was.

Figure 18: Illustration of the work done in a convolutional layer

56

The formula for the convolutional layer’s calculation is a dot product calculation,
where a filter (a.k.a kernel) F is applied to an image in sections (the number of
sections depends on the size of the image and the size of the filter) as seen below.
We will use the image above for examples as we break down the equation.

Z(i, j) =
k−1∑
m=0

k−1∑
n=0

C∑
c=1

I(i+m, j + n, c) · F (m,n, c)

The variables i and j denote where in the image we are looking at the moment. If
we input (0, 0), the top left of the filter would be placed at (0, 0). This is what is
happening in the above figure.

The size of the filter is an k × k matrix (a 2× 2 matrix in the above figure). So
when we place it on the image, we get an k × k “focus zone” where we are looking
for a feature.

m and n within the summations denote the coordinates of pixels in both the image
I and the filter. We iterate through them, multiplying the pixel value of a
coordinate within the image by the value within the filter that “overlaps” it. You
can see this being done in the above image, as we multiply the pair 3× 2. The 3
comes from the image and the 2 comes from the overlapping spot in the filter. We
repeat this for all pixels in the “focus zone”, summing them all up.

The coordinate c designates the channel of the image and filter the calculation is
currently focusing on. Colored images have 3 channels, one that stores the R (red)
pixel value, one that stores the G (green) pixel value, and one that stores the B
(blue) pixel value. We would apply a filter to each of these channels separately.
This allows us to detect features through the dimension of color as well (e.g. “red
ear”). The filters applied to each channel can be the same, or different, depending
on the architecture of the CNN. There are also other encodings for colored images,
such as HSV or CMYK. Black and white images can be encoded in just one
channel.

Finally, Z(i, j) returns the value that we will store in the feature map described
previously.

Along with kernels, two other factors affect how the feature map Z is created,
stride and padding. Stride denotes how many pixels the filter is shifted by during
the calculation. The kernel can be shifted by only 1 pixel meaning there will be
overlap in the sections of the image the kernel is placed on. Or, with a stride that

57

equals the width of the kernel, the sections that the kernel is applied to do not
overlap. In the above image, the stride is 2. Observe more examples of strides that
are depicted in Figures 3 and 4 below.

Figure 19: Illustration depicting a stride of 1 pixel

Figure 20: Illustration depicting a stride of 2 pixels

Padding, on the other hand, refers to extra pixels around the edges of a kernel.
These extra pixels, usually having a value of 0, control the size of the outputted
feature map. With padding, we can manipulate the size of the feature map in

58

multiple ways, including leaving the feature map with the same dimensions as the
input matrix, while still applying the kernel as a filter.

16.2 Nonlinearity in CNNs

CNNs, like all neural networks, employ nonlinearity to model the complex
patterns in their data that cannot be captured by linear transformations alone.
Nonlinearity is vital for neural networks - without it, all their calculations would be
the equivalent of a single linear operation. Using non-linear functions break this
linearity, enabling the model to approximate complex, non-linear decision
boundaries, which is essential for tasks like image recognition, object detection, and
natural language processing. In CNNs, this nonlinearity is employed after the
application of the kernel and with activation functions. Using non-linearity after
convolutional layers aids the network in learning hierarchical features of increasing
complexity. Early layers learn simple features like edges and textures, while deeper
layers combine these to detect more abstract features such as objects or shapes.

CNNs commonly use the Rectified Linear Unit or ReLU activation function.
ReLU, as seen in the formula below, is quick, efficient, and requires little
computation power.

ReLU(x) = MAX(0, x)

ReLU leaves all positive values unchanged and changes all negative values to 0.
This method prevents certain neurons from activating, making the model more
efficient and less prone to overfitting. However, stopping neurons from activating
also has disadvantages, such as certain features or neural connections ‘dying out’.
This means some neurons will never learn and advance, since their gradients are
reset to 0 using this activation function.

In order to address these disadvantages, models sometimes use LeakyReLU.
LeakyReLU uses the formula:

f(x) =

{
x, if x > 0

αx, if x ≤ 0

where α denotes a small positive constant, usually 0.01. In this activation function,
negative values are suppressed instead of reset. So neurons will be able to activate,
but their activation will be quieter and negative values will continue to have less
effect on the final conclusion.

59

16.3 Pooling Layer

Now, after the convolutional layer, the features in the image are amplified and
complex calculations have been used to manipulate the image to extract details
from it. Once those calculations are complete, another layer manipulates the image
further, summarizing all these little details brought out by the convolutional layer.
This is called the pooling layer. The pooling layer simplifies the feature map
outputted by the convolutional layer, while retaining the significant features. This
reduces the amount of parameters that move on to the next layer and the amount
of computation necessary, making the model more efficient. Any further operations
done by the model will be done on the ‘pooled’ matrix, with features summarized
and simplified through the use of a 2-dimensional filter. For a feature map having
dimensions h× w × c, the dimensions of the map after pooling would be(

h− f + 1

s
× w − f + 1

s
× c

)
Note that f is the size of the filter used and s denotes the length of the stride used.

A common technique used for the pooling layer is max pooling. This operation
takes the maximum value in a given section of the feature map and selects that
number to represent the section in the summarized map, as seen in the figure below.

Figure 21: Illustration of the max pooling operation

If we take the section of the map that the max pooling operation is being done on
as Z(i, j), we get the following formula for the calculation on Z(i, j). This
calculation is done assuming a section size of 2× 2.

Zpool(i, j) = max{Z(2i, 2j), Z(2i+ 1, 2j), Z(2i, 2j + 1), Z(2i+ 1, 2j + 1)}

Average pooling, another pooling operation, uses a similar methodology. Rather
than taking the maximum value however, average pooling chooses the average value

60

of the section rather than the maximum as representation in the pooling matrix.
It’s Zpool formula for a 2× 2 section is as follows

Zpool(i, j) =
1

4
(Z(2i, 2j) + Z(2i+ 1, 2j) + Z(2i, 2j + 1) + Z(2i+ 1, 2j + 1))

While pooling layers are extremely beneficial in making models more efficient, they
have a few disadvantages. As you can see in both the max and average pooling
operations, pooling causes significant information loss. Pooling layers minimize the
data, meaning we lose information in the process. This loss can cause excess
‘smoothing’ of the image, where finer details are lost.

16.4 Fully Connected Layer

The dense or fully connected layer is the last layer of a Convolutional Neural
Network. Typically, CNNs employ several convolutional and pooling layers before
the dense layer, to extract and identify all the necessary features before making a
conclusion. Before the input from the last convolutional or pooling layer can be
passed to the dense layer, it is flattened into a one-dimensional vector. These dense
layers are just neural networks, and, in the cases where the CNN is integrated into
another network, they are the neural network processing the features extracted by
the CNN. The fully connected layers, or the model in the other case, perform
regression or classification operations on the given input to draw a conclusion based
on the data. For a single-dimensional input vector x, a weight matrix W, and a
vector of bias terms of each neuron b, the formula for the vector of outputs z would
be

z = W · x + b
The dense layer also typically uses an activation function when doing a multi-level
classification operation. This activation function takes the logits from the previous
layer and converts them into probabilities between 0 and 1. The softmax
activation function, as seen below, is typically used for this specific operation.

Softmax(zi) =
ezi∑n
j=1 e

zj

In the formula, zi denotes the raw logits calculated by the dense layers for class i.
After applying the softmax operation to raw logits (can hold any numerical value),
we get a “probability distribution” over all classes. We then select the one with the
highest probability, and say that the image given to the CNN belongs to class i.

61

16.5 Loss Functions, Optimizers, and Regularization

Similarly to neural networks, CNNs also use loss functions, optimizers, and
regularization to improve their accuracy. They use many of the same functions that
we’ve covered already, such as Cross-Entropy Loss and Mean Squared Error
for loss functions, gradient descent for optimization, and dropout for
regularization.

See the figure below for an overview of the entire architecture of a Convolutional
Neural Network.

Figure 22: Illustration of complete architecture of CNN

Synthesis Questions:

1. What region of the brain are CNNs (loosely) based off?

2. Describe, in your own words, what is the purpose of a convolutional layer?

3. What changes the size of the output feature map, padding or the values populating a
kernel?

4. What changes the values in the output feature map, padding or the values population
a kernel?

5. Why are there usually multiple convolutional and pooling layers in CNNs?

62

17 Self-Supervised Learning
Self-supervised learning or SSL, is a paradigm of machine learning that allows
models to learn from useful representations of data. This means that models using
SSL don’t need large, extensively labeled datasets (datasets that are usually labeled
manually), saving time and resources. By employing self-supervised learning,
models are able to use unlabeled data to learn. The fundamental idea of
self-supervised learning is for the model, when given unlabeled data, to generate
labels for said data. These labels will be used as ground truths (like true labels) in
further operations. In the first step, the model attempts to identify patterns in the
data and then, based on these patterns. assigns labels to the data it feels confident
about. Then the model continues its training, using its labels and continuing to
learn with backpropagation as normal. The only difference in the training process
is that every time the model makes a forward pass, it reassigns the labels to
whatever data is it confident about. there are several methods SSL models employ
to efficiently and reliably conduct this process.

17.1 Methods of SSL
The first method we will discuss is Contrastive Learning. This is one of the core
techniques of self-supervised learning. Contrastive learning works to train the
model to distinguish between similar and dissimilar points. Using this training, the
model can determine which points should have the same label and which should
have different labels.

To implement contrastive learning, the model typically uses pairs or groups of data
points. For example, in image data, the model might be given two views of the
same image with slight transformations—like rotations, cropping, or color
adjustments—as ”positive” pairs. It then receives unrelated images as ”negative”
pairs. The model is trained to bring the positive pairs closer together in its internal
representation space while pushing the negative pairs further apart.

Another popular method is called predictive tasks. In this technique, the model
is given a scenario in which it must predict the values of some features given the
values of other features. For example, it may have to predict missing or hidden
sections of images given the rest of the image. Techniques like image inpainting
(predicting missing parts of an image) or rotation prediction (learning the
correct orientation of rotated images) allow the model to learn contextual and
spatial relationships within the image, strengthening its understanding of the data.
In addition to image inpainting and rotation prediction, predictive tasks can also

63

include techniques such as context prediction, where the model attempts to
predict the surrounding context of a specific image region. In this scenario, a
portion of the image is masked or hidden, and the model is tasked with inferring
the values of the masked area based on the visible context. This process encourages
the model to focus on local and global features, enhancing its understanding of how
different elements interact within the image. Using predictive tasks, the model will
learn more about the data and will be able to label it without supervision.

17.2 Importance of SSL
Self-supervised learning is critical in computer vision because it addresses the
challenge of obtaining labeled datasets for image classification. Datasets for
computer vision must be extensive and are typically manually labeled, making it
much harder to generate the data needed for supervised learning in computer vision
tasks. In many fields, such as medical imaging, autonomous driving, and wildlife
monitoring, labeled data is scarce or difficult to acquire. Self-supervised learning
addresses this issue directly by allowing models to learn directly from unstructured
data without the need for extensive labeling. This approach not only reduces the
reliance on human labor for labeling but also enhances the model’s generalization
capabilities across diverse tasks and datasets. Ultimately, self-supervised learning
paves the way for more efficient and scalable computer vision solutions, enabling
broader applications and improvements in areas like image classification, object
detection, and scene analysis.

Synthesis Questions:

1. In your own words, how does self-supervised learning mitigate the shortcomings of
supervised learning (think about the training process and data)?

2. Can you think of any ways in which self-supervised learning is similar to human learn-
ing?

3. What are some specific fields that would benefit from using self-supervised learning
for computer vision?

18 Image Segmentation
Another method used in computer vision models is image segmentation. This
approach focuses on identifying groups of pixels that belong together and works to
separate individual objects in images.

64

Figure 23: Illustration of high-level image segmentation

By combining individual pixels into groups, image segmentation allows for faster,
more efficient image processing. It also allows for more advanced image processing
with less computation. Image segmentation is widely utilized in various
applications, such as medical imaging, where it assists in identifying tumors or
anatomical structures, and in autonomous vehicles, where it helps recognize
pedestrians, road signs, and other vehicles. By accurately separating objects from
the background, image segmentation enhances the performance of machine learning
algorithms and improves decision-making processes.

18.1 Techniques of Segmentation

An important concept in image segmentation is superpixels. The term
superpixels refers to smaller collections of pixels that are grouped together for a
shared characteristic, such as color or texture. The model then is able to treat each
superpixel as its own pixel, drastically reducing the amount of data taken in by the
model. This reduction in the number of segments that need to be processed leads
to more efficient algorithms.

Superpixels are grouped in several ways. Superpixels are designed to maintain the
spatial distance and positioning of their pixels. Therefore spatial coherence is a key
factor in the creation of superpixels, meaning that adjacent pixels are more likely
to be included in the same superpixel. Additionally, superpixels can be formed
through same-color grouping, where pixels with similar color values are clustered
together, allowing for the identification of regions that share visual characteristics.
Another approach is the grouping of pixels with the same texture, which focuses on
the texture features of pixels, clustering them based on patterns and variations in
surface properties. These different grouping methods enhance the ability of
superpixels to capture meaningful segments of an image, facilitating more efficient
and accurate image analysis.

65

Segmentation is also used to identify separate entities in images, entities that are
larger than a few pixels. There are two main entity classes in segmentation, things
and stuffs. Things are objects in images - people, structures, animals, etc. Things
have characteristic shapes and have relatively little variance in size. Stuff, on the
other hand, refers to classes with amorphic shapes, entities that are fluid and have
no characteristic shapes. Sky, water, grass, and other backgrounds are typical
examples of stuff. Stuff also doesn’t have countable, individual instances, like
things two. A blade of grass and a field of grass are both grass, but a bear and fives
bears are not both a bear. There are some entities that, under certain image
conditions, can be both things or stuff. For example, a large group of people can be
interpreted as multiple “persons” — each a distinctly shaped, countable thing — or
a singular, amorphously shaped “crowd”.

The simplest method of entity segmentation is semantic segmentation. This
method assigns a semantic class to each pixel, but does not identify classes or
differentiate between thing and stuff classes. Semantic segmentation focuses on
drawing boundaries between objects but does not assign labels to them or identify
different instances of the same object. Other more complex methods of
segmentation are instance segmentation and panoptic segmentation. To
learn more about segmentation, see IBM Image Segmentation.

Synthesis Questions:

1. How do superpixels enhance the efficiency of image segmentation algorithms?

2. In what scenarios might an entity be classified as both a “thing” and “stuff” in image
segmentation? How might this dual classification impact the effectiveness of semantic
segmentation methods?

19 When to Use Computer Vision
Computer vision is a field with a long history and many decades of research put
into it. People have been working on these problems long before the recent waves of
deep learning and machine learning. As such, it is worth digging deep into CV
literature to find the best and most efficient model or architecture for your specific
task. Some tools created with computer vision in mind (i.e. CNNs) can also be
used in non-CV tasks if you want to leverage spatial information within your data.

66

https://tinyurl.com/7kz8dkhu

20 Conclusion (CV)
This section covered some of the fundamental concepts within computer vision. By
leveraging techniques like Convolutional Neural Networks (CNNs) and
self-supervised learning, we’ve learned how machines can mimic human vision,
identifying objects, segmenting images, and even understanding complex scenes.
This is no small feat; it means computers can learn to see and interpret visual
information, making them more intuitive and responsive to our needs. This deep
dive reveals just how crucial CV is for making sense of the visual world around us
in the modern era. Computer vision serves as a bridge between the raw data
captured by cameras and the meaningful insights we derive from those images. It
plays a vital role in our increasingly digital lives, impacting everything from social
media filters to advanced security systems.

Understanding these methods is key because they enable computers to perform
tasks that once seemed out of reach, like accurately detecting tumors in medical
imaging or helping autonomous vehicles navigate safely. For instance, in
healthcare, CNNs can analyze scans and X-rays, significantly reducing the time it
takes to identify critical conditions, ultimately leading to faster diagnoses and
better patient outcomes. Similarly, in the realm of autonomous driving, computer
vision allows vehicles to recognize pedestrians, road signs, and obstacles in
real-time, enhancing safety and efficiency on the roads. These advancements not
only improve operational capabilities but also build trust in technology that plays
such a significant role in our lives.

67

REINFORCEMENT LEARNING

68

21 What is Reinforcement Learning?
21.1 Problem Definition
Reinforcement Learning is a subfield of AI that concerns itself with optimizing
behavior of agents in environments using rewards. It is focused on finding
efficient ways to train an agent (think of Mario) to reach a goal (the flag) within an
environment (World 1-1) by offering rewards (coins, distance to flag, etc.). The
example of Mario is actually quite narrow, as it restricts RL to “game-like”
situations only. Although many popular examples of RL are about solving/beating
some puzzle/game, the true extent of the field is much richer. There are projects
that heavily rely on concepts from RL that may not be obvious at first. For
example, AlphaTensor is a model published by Google DeepMind that searches for
ways to perform large matrix multiplications in fewer operations than the standard
method that we see commonly used. A significant part of this algorithm is
considered reinforcement learning. Also, many Large Language Models (LLMs) use
reinforcement learning with human feedback (RLHF) for finishing touches in their
training process. ChatGPT is one of these LLMS! Neither of these examples
present as a game or puzzle, yet RL is used extensively within them.

As mentioned before: many examples of RL are within game-like environments, but
it is important to understand that the “agent” and “environment” can be almost
anything that you wish to define them as (there are a few restrictions). A more
general definition of RL can perhaps be “using trial and error to learn a strategy
that maximizes reward in a selected environment”. The field of reinforcement
learning pulls a lot from optimal control theory, machine learning, probability
theory, and a little bit of psychology and neuroscience. Stepping through all of RL
in an article is nearly impossible, there are whole books on 1

100
of this content. As

such, this article will introduce common symbols, provide some priming on large RL
subcategories, and end with a couple algorithms and their strengths/weaknesses.

21.2 Common Symbols and Definitions
Here are some common symbols used in RL and their meanings. Analogies have
been provided for ease of understanding.

State: s ∈ S

• Most commonly represented as a vector, a state is a snapshot of the world at
some timestep t (often denoted as st). A state records important information
about the current frozen moment in time that often determines what will

69

happen next. The way the vectors represent the state is a choice dependent on
the problem.

• An example of a state from the game Pong would be a vector holding the
y-positions of the paddles, the velocity of the paddles, the position of the ball,
and the velocity of the ball. It could also contain the score. Note that just raw
positions are not “good enough” to comprise a state, because it would be
difficult to determine what could happen next from just positions (i.e. The
ball is at (0,0). Is it moving left or right?)

Action: a ∈ A

• An action is a choice that the agent (see below) makes within the environment
that often influences the subsequent state. Actions are taken at a time t and
are denoted as at. Actions can be represented as scalars between a range (0-1),
a one-hot encoded vector ([1,0,0,0]), or an unbounded vector ([0.5, -3, 2,
0.001]). The choice of how an action is represented depends on the problem.

• An example of an action from the game Pong would be a number between -1
and 1 determining the speed of vertical movement for the next timestep. Note
that this implicitly encodes the “do nothing action” of 0 (standing still).

Agent:

• An agent is an actor that takes in the current state of the environment and
acts optimally (or tries to) in order to maximize reward.

• An example of an agent would be Mario, the character.

Policy: π

• A policy is a function that outputs action(s) given the state of the
environment. Agents and policies are closely tied together because the job of
an agent is to learn a good policy. There are two main types of policies.
Deterministic policies are represented as π(s)→ a, meaning that there is a
mapping between each state of the world and the best action to take at that
time. A stochastic policy can be defined as π(at|st). This means that given
a state at time t, a policy will give you a distribution over all possible actions,
with probabilities corresponding to how good that action is at that timestep.
The agent can then select an action based on these probabilities.

• An example of a policy would be how Mario behaves based on his
surroundings. Note the difference between this and the character Mario. It is
similar to the difference between policy and agent.

70

Environment:

• A space, the world, that the agent can interact with and influence. Can be
thought of as “all possible states”. Also implicitly contains transition
dynamics, or probability distributions of future states depending on the
current state and action (p(st+1|st, at))

• An example of an environment would be World 1-1 from Mario. Not just a
snapshot of the world at a time t, but the idea of this “level” to beat.
Transition dynamics for this environment would be the physics engine and
enemy movement.

Reward: r

• Perhaps one of the most important terms. A reward is a scalar value given to
the agent after it takes an action, determined through a reward function
that considers the state-action pair at time t and its “optimality”. This is
represented as R(st, at) = rt. Generally, the higher r is, the better the action
at the agent took based on state st. This reward value serves as a learning
signal for the agent, and is used to update its parameters to improve
performance on future actions.

• For example, if Mario is standing next to lava (state st) and he took the action
“go forward”, the reward rt as determined by r(st, at) would be very low,
perhaps even negative. Mario dies, and the agent tries again. Once this same
lava pit is reached, Mario instead takes the “jump” action and lands on the
other side of the lava pit safely. Since he moved closer to his goal, the reward
function spits out a high reward. This reinforces the rule “If next to lava, then
jump”. Through this trial and error, the policy is slowly updated until Mario is
able to maximize reward by beating the level!

Trajectory: τ

• A compact way to represent the path an agent took through the environment
during one episode and the rewards it received for doing so. An episode
begins with the very first state s0 and continues until the agent dies, reaches
its goal, or runs out of time. Trajectories are useful because they store enough
information to “replay” the episode entirely. For an episode of length T , the
trajectory would be τ = (s0, a0, r0, s1, a1, r1, ..., sT , aT , rT).

• A trajectory in Mario would record every frame of the game, every action
taken at each timestep, and the rewards given to Mario. You can think of it as
“recording” an agent’s playthrough of World 1-1.

71

21.3 Markov Decision Process
I mentioned earlier that there were a few restrictions to defining something as an
RL problem. The Markovian property is one of them. The transitions within an
environment from state to state must be a Markovian decision process (MDP). For
a decision process to be Markovian, the transition from state st to st+1 should be
independent of the “history” of that state, i.e. states s0, s1, ..., st−1. Why is this
helpful? Well firstly, it makes it such that a policy can be learned much easier since
we have less unique state-action pairs to deal with.

Think about it: If there were 100 states and 4 actions, a policy would only need to
deal with 100× 4 state-action pairs total if the transition dynamics were Markovian.
With today’s compute, you can even create a table that maps each state to the
optimal action for that state and do it with brute force search. However, if a state’s
history needs to be considered, then determining the proper action to take at st
would require considering the 100t paths possible to reach st. With the decision
process not being Markovian, Mario jumping up over a block and ending up past it,
and Mario running under it but ending up at the same spot would not be the same
state st! This combinatorial explosion makes things way harder.

Another way to formalize this can be seen below:

p(s1, s2, s3, ..., st) = p(s1)p(s2|s1)p(s3|s2)...p(st|st−1)

The left-hand side of the equation is the probability of events s1 AND s2 AND s3...
happening. Now on the right hand side; Note how p(s3|s2) (probability of s3
happening given that s2 has already happened) does not include s1 anywhere,
despite it being in the “history” of s2. The movement between s2 → s3 is
independent of s1. With an MDP, you can find the probability of a sequence of
states quite easily with much less compute than if you had to consider the history
of the state. This algorithm tries to get an RL agent to accomplish a task by
learning from an expert doing the same task.

This is very important: how you define states is often what makes a problem
behave as an MDP. Remember the example about Pong states earlier? If we were
to capture only the positions of the paddles/ball, then we would NOT have an
MDP. This is because by looking at the ball at a position (e.g. (0,0) at t = 1) we
cannot tell if it is moving forward, backward, up, or down. We would need to look
into its history to determine that. If the ball was at (-1,-1) at t = 0, and now is at
(0,0), we can assume that it has a velocity of [1,1] and will be at (1,1) at t = 2.
Since the transition from s1 → s2 is dependent on s0, this is not an MDP. However,

72

if we include the velocity [1, 1], into the state along with the position, this problem
goes away! We no longer need to look into a state’s history to determine how it will
transition. Everything is captured in this clever definition of a state.

21.4 On vs. Off-Policy RL
A short but important note on the terms on-policy and off-policy RL. If you
decide to pursue RL on a deeper level, the distinction will become more important
as the math behind algorithms in each has different assumptions and conclusions.
However, for simplicity, here are some basic definitions:

On-Policy: On-policy reinforcement learning algorithms can only use information
from the current trajectory to update its policy. In other words, the agent tries to
solve the problem (perhaps a few times), updates its policy based on the rewards
received, and tries again. Once the policy is updated, the information (trajectories)
gathered using the pre-update policy becomes “useless”. Since the agent is
following a fresh new policy, it is mathematically improper to draw examples from
a different distribution to update itself. While algorithms that are on-policy tend
to be more stable, they are much less sample efficient and have high variance.

Quick Definition: Sample efficiency is how well a model can use the information
provided within datapoints to learn patterns. A sample efficient model would just
need to see 10 examples to learn a pattern. A non-sample efficient model may need
1000’s. Your brain is one of the most sample efficient models out there!

Off-Policy: Off-policy algorithms are allowed to use information collected from
“older” policies to update the current one. This makes them much more sample
efficient, as you can use the same trajectory to optimize the policy many times as
opposed to just once. Off-policy RL algorithms, while more sample efficient, tend
to be less stable and require a few tricks to work properly.

73

Synthesis Questions:

1. Think of a video game, board game, or puzzle that you like. Then do the following:

• Define the environment, and agent. What is the positive reward that the agent
should chase? Try to tie this to a mathematically calculable formula (i.e. r = 1

d
where d is the distance to the flagpole).

• Define as concretely as possible a representation of states and actions for this
environment/agent. Can you show that the states you chose could form an MDP?

2. Do you think an on-policy or off-policy algorithm would suit your problem better
(there is no right answer for this one, it is a hard question)?

22 Imitation Learning
22.1 Basic Behavior Cloning
Taking a step back from the plethora of notation, we will approach RL somewhat
naively through behavior cloning, one of the simplest forms of RL. Rewards are
not even needed in this problem formulation, and it blurs the lines between
supervised learning and reinforcement learning.

In this problem formulation, we assume we have an expert from which we get many
(s∗, a∗) pairs. The superscript stars denote that this information is “optimal”. We
assume that the expert has solved the problem perfectly. For example, we would
allow a human with a remote control to operate a robotic arm and perform a task.
The telemetry data would be recorded and this dataset is referred to as D, from
which we can sample (s∗, a∗) pairs. We can now write an optimization objective:

argmax
θ

[
E(s∗,a∗)∼D[logπθ(a

∗|s∗)]
]

This seems complicated so let’s break it down:

↓

argmax
θ

[
·
]

Argmax with an underset θ means that we wish to find some θ that will result in
the maximum possible value for the function that follows. For example:

74

argmax
x

[
−x2

]
= 0

0 is the value of x that maximizes −x2, so argmax
x

= 0.

E(s∗,a∗)∼D[·]
↓

argmax
θ

[
E(s∗,a∗)∼D[·]

]
A subscript of an expectation can be somewhat ambiguous, and mean slightly
different things depending on context. In this case, we are defining where s∗ and a∗

come from (the expert distribution D). This becomes important because these two
variables are part of the final term we introduce:

logπθ(a
∗|s∗)
↓

argmax
θ

[
E(s∗,a∗)∼D[logπθ(a

∗|s∗)]
]

πθ is the policy, parameterized by θ. What this means is that if this policy is
represented by a neural network, then θ are the weights and biases. logπθ(a

∗|s∗) is
the “log-probability” of the model choosing a∗ given s∗. The highest this probability
can be is 1. Note that the logarithm of 1 evaluates to 0. Anything below 1 will
evaluate to be exponentially more negative/worse. So if we wish to find the weights
and biases (θ) that maximize logπθ(a

∗|s∗), we need to select weights and biases that
assign a probability of 1 to a∗ given s∗ and 0 to all other actions. We know that a∗

and s∗ come from an expert distribution D thanks to the subscript. Therefore if we
find θ, we have a policy that will act optimally given the states it has seen! This
notation may seem heavy, but it is a primer for more complex algorithms.

How this is implemented in code is quite simple. We simply take every (s∗, a∗) ∼ D
pair and label the s∗ as the data and the a∗ as the label. We then train a neural
network on this data (input dimensionality is the dimensionality of s, output
dimensionality is the dimensionality of a), and call it πθ. We now have a policy
that can accept a state, and act accordingly. This all seems much too simple
though. What is the drawback?

75

22.2 Problems with Behavior Cloning
There are two compounding problems with behavior cloning that make a basic
implementation mostly unviable for complex situations.

The first is that it has quadratically compounding error. There is a proof for
this, but it is also intuitive. Say, due to physical forces or minor perturbations, that
a robot cloning the behavior of a human gets 0.1cm off from where it should be
after taking action a∗t at st (optimal action at state st). We are now in dangerous
territory, as the state the robot is in currently is not found in any training example.
As a result, the robot takes a sub-optimal action and ends up 1cm off track. It will
be near impossible for the robot to complete its task after a few more missteps, and
now it is grabbing your ear instead of the apple it was supposed to. Behavior
cloning leads to very precarious paths to follow. If the robot can stay perfectly on
track and nothing new comes up, then it is able to complete the task perfectly.
This is not really useful though. You may as well resort to optimal control theory
for robotics, which give you much more guarantees and a little more flexibility. One
way to mitigate this is to add lots of training examples, but to even begin to the
solve the problem, you need an exorbitant amount of data. There are more
intelligent ways to do this, like the DAgger algorithm discussed later.

The second problem is called mode averaging. If we have two paths around an
obstacle, for example a tree, we can go around it to the left or to the right. A
human knows there is no inherent difference between these two paths, and takes
each one with equal probability. However, training a model on this data does not
mean the model will also go around the tree in these two ways. Instead it averages
the two behaviors and ends up going straight into the tree. It is clear that this is
sub-optimal behavior, but it is an unavoidable consequence if you have a policy
with one mode. For example, a Gaussian policy has only one peak, and will pick
one “best” action, which will be in between the two peaks of the expert
distribution, and this means crashing. One way to mitigate this is to choose a more
expressive policy class. A mixture of Gaussians, for example, can have ≥ 1 peak.
This prevents the mode averaging problem but increases the complexity of your
model by a lot.

76

Figure 24: An illustration demonstrating the issues that arise from mode-averaging within
behavior cloning algorithms. The green and blue peaks represent choosing to go left or right

around the obstacle, and the black dashed line represents what a simple policy will converge on.

23 Proofs for Problems with Behavior Cloning
23.1 Mode Averaging
Below is a walkthrough demonstrating how mode-averaging comes out as a problem
in behavior cloning:

Take our original behavior cloning objective

argmax
θ

[
E(s∗,a∗)∼D[logπθ(a

∗|s∗)]
]

We define πe as the expert policy. Under the expectation E(s∗,a∗)∼D,
logπe(a

∗|s∗) = 0 is always true. This is because the expert policy will always assign
a∗ (optimal action) a probability of 1 given a state s∗. πe(a

∗|s∗) = 1, log(1) = 0, so
logπe(a

∗|s∗) = 0. We can therefore insert into the equation:

argmax
θ

[
E(s∗,a∗)∼D[logπθ(a

∗|s∗)− logπe(a
∗|s∗)]

]
Split the expectation into two nested expectations. (s∗, a∗) ∼ D can be rewritten as
s∗ ∼ pπe(·) followed by a∗ ∼ πe(·|s∗). In english, this means we get a state s∗ by
sampling from possible states the expert (πe) has explored and then sample the
action a∗ from the policy πe given that it considers s∗. The end result is the same,
as we have the variables s∗ and a∗ to use, and they come from the expert.

argmax
θ

[
Es∗∼pπe (·)[Ea∗∼πe(·|s∗)[logπθ(a

∗|s∗)− logπe(a
∗|s∗)]]

]
Invert the whole expression from an argmax to an argmin by multiplying by -1,
which carries through all the expectations because aE[X] = E[aX].

77

argmin
θ

[
Es∗∼pπe (·)[Ea∗∼πe(·|s∗)[logπe(a

∗|s∗)− logπθ(a
∗|s∗)]]

]
Use properties of logarithms to rewrite the innermost term:

argmin
θ

[
Es∗∼pπe (·)[Ea∗∼πe(·|s∗)[log

πe(a
∗|s∗)

πθ(a∗|s∗)
]]

]
For the final step, we must introduce the concept of F-divergence. An F-divergence
is, in simple terms, a function that measures the “distance” between two functions.
The general form of an F-divergence Df is:

Df (p(x), q(x)) = Eq(x)

[
f

(
p(x)

q(x)

)]
You may be familiar with Kullback-Leibler Divergence (KL divergence) which is a
form of F-divergence. KL divergence quantifies the difference between two
probability distributions. If you define an F-divergence with f(x) = xlog(x), you
get what is called the forward KL divergence.

Forward KL Divergence = DKL(p(x), q(x)) = Ep(x)

[
log

p(x)

q(x)

]
A quick proof of this fact is shown below. We use the property that
Eq(x)[p(x)] =

∫
p(x)q(x) dx.

Given: f(x)← xlogx

Df (p(x), q(x)) = Eq(x)

[
p(x)

q(x)
log

p(x)

q(x)

]
=

∫
p(x)

q(x)
log

p(x)

q(x)
q(x) dx

=

∫
p(x)log

p(x)

q(x)
dx

DKL(p(x), q(x)) = Ep(x)

[
log

p(x)

q(x)

]
We can apply the definition of forward KL divergence to the inner expectation
shown before.

Ea∗∼πe(·|s∗)[log
πe(a

∗|s∗)
πθ(a∗|s∗)

] = DKL(πe(·|s∗), πθ(·|s∗))

78

We are in this expression calculating the KL divergence between the expert policy
action distribution given state s∗ and the agent’s action distribution given state s∗.
We can now insert this back into the original equation and draw some insights:

argmax
θ

[
E(s∗,a∗)∼D[logπθ(a

∗|s∗)]
]
= argmin

θ

[
Es∗∼pπe (·)[DKL(πe(·|s∗), πθ(·|s∗))]

]
We now see the original behavior cloning problem formulation written as an
F-divergence (more specifically, KL divergence) minimization problem. Since the F
divergence is forward KL divergence, it is mode-averaging by nature. In other words,
trying to minimize the forward KL divergence between a multimodal expert policy
πe and a single-mode actor policy πθ will result in finding a policy that does not fit
to either mode, but seeks to the mean of both. Seeing the KL divergence clearly in
the equation makes this an unavoidable fact. This gives us a much more concrete
basis for why we should expect to observe the crashing behavior discussed earlier!

Figure 25: The blue curve is our single-mode Gaussian decision policy and the bimodal orange
line is our expert policy (can go left or right around the tree). The top graph shows what we

would like to happen, which is choosing a mode and sticking with it. However, the bottom graph
shows what actually happens when we minimize forward KL divergence. This is mode-averaging

behavior (crashing into the tree).

79

This analysis also gives us another avenue by which to improve behavior cloning
instead of selecting a more expressive policy class: Find ways to rewrite the original
objective such that we end up with a different F-divergence that is not
mode-averaging. There are papers written about this that I suggest you read if you
are very interested in this subsection of RL.

24 DAgger Algorithm
DAgger seeks to preserve the core of behavior cloning — learning by following an
expert — but making it so that we are not on a “precarious ledge” and small
perturbations do not send us way off track. DAgger stands for Dataset
Aggregation, and improves the performance of behavior cloning by augmenting D
with more human data, but intelligently.

A basic DAgger algorithm will look like the following:

1. Train πθ (initial policy) on examples from D, the dataset of examples from the
expert

2. Run the policy πθ and record the trajectory τ = (s0, a0, s1, a1...) or the actions
it takes in a sequence

3. Have a human label each st ∈ τ with the optimal action a∗. Call all these
(s, a) pairs Dπθ

4. Add Dπθ
, or the new state action pairs, to D. D ← D ∪Dπθ

. The datasets
have been aggregated!

5. Repeat until the agent behaves well.

Why does this work well? In essence, you are “extending the precarious ledge” that
behavior cloning usually creates. A human adding corrective labels at critical
failure points lets the agent know what to do at those points to get back on track.

80

Figure 26: A visualization of how DAgger helps keep the agent performing well. We first see the
agent (x̂) deviate from the expert (x), but we then take these observations of where the agent

failed and give it instructions on how to get back on track. With enough iterations, a lot of failure
cases can be mitigated.

Behavior cloning is a section of RL that may seem simple at first, but can be quite
involved when you try to solve the problems that come with a naive
implementation. The next few sections will cover more “core” RL algorithms and
analyze their strengths/weaknesses.

81

Synthesis Questions:

1. Write definitions for the following symbols:

• (st, at)

• (s∗, a∗)

• D

2. What does the θ in πθ represent?

3. What is the issue of quadratically compounding error in behavior cloning, and how
does DAgger mitigate it?

4. What is the issue of mode averaging in behavior cloning, and how do you prevent it
from happening?

25 Policy Gradient
25.1 Basic Policy Gradient

Figure 27: An illustration showing how the agent and environment communicate through actions,
states, and rewards in a traditional RL setting. The subscript t is for timestep.

Let’s start by introducing a new problem scenario. in this hypothetical, we do not
have an expert to learn from. Instead, we receive rewards from the environment.
This is the more traditional RL problem setup we discussed earlier. In this case, we
have to define a new objective function that is based on rewards, not expert

82

state-action pairs. Lets just do the simplest thing and try to maximize the rewards
that the agent receives over time. How can we write this down? Well, the sum of
rewards an agent receives over the course of a trajectory is called the return of
that trajectory. It is denoted as R(τ). It can have a few different formulations.
Here is the one that will be important for policy gradient (PG):

Infinite Horizon Discounted Reward:

R(τ) =
∞∑
t=0

γtr(st, at)

The st and at come from the trajectory τ . We simply add up all the rewards
throughout the trajectory, but reducing the contribution of r(st, at) way in the
future through the use of the discounting factor γ (usually around 0.85-0.99). This
is because we don’t value the future returns as much as immediate ones. As
t→∞, γt → 0. This ensures that really long trajectories don’t result in a
incalculably large return. For example, a reward of 100 at t = 0 contributes 100 to
the sum, but if the same reward is received 25 steps in the future, or at timestep
t = 25 with γ = 0.95, a reward of 100 only contributes about 0.9525 · 100 ≈ 27 to
the sum. By timestep t = 1000, rewards are not even considered.

We can now be more specific about our objective. We want to maximize the return
that the agent receives. Here is how we do it. We first create an equation that has
policy parameters as its input. We want this function to give us the expected
return if we were to use a policy with these parameters. Now we want to find the
perfect parameters θ that gives us the highest return. We can do this by
performing gradient ascent on the parameters. This is why the method is called
policy gradient!

Below is the equation we want to maximize using gradient ascent:

J(θ) = Eτ∼πθ
[R(τ)]

In English: Maximize the expected (E) return of trajectories (R(τ)) explored
(τ ∼ πθ) by the agent by adjusting the parameters of the model (θ). The model in
this case would be a neural network so θ represents weights and biases.

Our ultimate goal is to calculate ∇θJ(θ) and update θ as such on each iteration i:

θi+1 ← θi +∇θJ(θ)

83

If we repeat this process many times, we should have parameters to a policy that
gives you high returns. This means that our agent will be “playing” the game
properly, and Mario will reach the flagpole!

The proof for this is later in the article, but calculating the gradient of J(θ) gives
us the following:

∇θJ(θ) ≈
1

N

N∑
i=0

T∑
t=0

[
∇θlogπθ(a

i
t|sit)

T∑
t′=0

γt′r(sit′ , a
i
t′)

]
It seems complicated, but it means something quite intuitive. Firstly, the ≈ exists
because this is a “Monte-Carlo” approximation to the actual gradient, which is in
an expectation. Evaluating this would mean exploring every single possible
trajectory, which is impossible for anything but toy problems. This is what the
outer sum 1

N

∑N
i=0 signifies: Try a few trajectories and average your results, as

opposed to checking all of them. It is similar in principle to stochastic gradient
descent (SGD).

The inner summation is where the meat of PG lies. Notice that there are two t
variables, t and t′. The summation regarding t′ is just the expanded form of the
return we saw earlier. This is a “weight” or “scaler” for the very important term
∇θlogπθ(a

i
t|sit). This term represents the gradients of the log-likelihood of taking

action at given st under policy πθ. That is a bit confusing, but here is the
important bit: The higher this value is, the more likely the policy will be to take this
same trajectory again after performing an update. This is why we weight it by the
return.

(1) A high return, say 100, indicates that the agent was on a good trajectory. We
want to increase the chances we take these same actions at these same states by a
lot. So we scale the gradients by 100 (the return). After an update to the weights,
our policy πθ is much more likely to find that good trajectory again. (2) Now say
the agent blunders and gets a trajectory with a return of 5. This is not very good,
so we don’t really want to take these same actions in the same states again. Not
much about the model changes. (3) Now say the agent does very poorly and gets a
return of -99. This is terrible! We actually push the gradients in the opposite
direction, making πθ less likely to make the same blunders that got us such a low
return after a parameter update.

Actually calculating this derivative ∇θlogπθ(a
i
t|sit) is taken care of by autodiff

within PyTorch, TensorFlow, or the deep learning library of your choice. You don’t

84

need to worry about the computation too much. Doing a forward pass through the
network lets the library create a computation graph (what operations happened
and in what order) to then calculate gradients for the parameters θ. In short: the
actual derivative is done for you. The trick of PG is scaling it by the return to
make actions in good trajectories more likely to occur. Do this over and over again
N times and perform an update. Perform many updates and you will get an agent
that can play a complex game!

26 Advanced Policy Gradient Concepts
26.1 Return-to-Go
Despite seeming complex enough, Vanilla PG suffers from a few problems: The
biggest of them being that Vanilla PG is a high-variance estimator. What this
means is that you could train the model 100’s of times and change nothing but the
random seed used to initialize the weights, but get 99 failures and one success. It
will not train nor work consistently most of the time. Therefore more advanced PG
methods attempt to reduce the variance of the estimator.

The simplest of these advances is something called return-to-go estimation. It
deals with this part of the PG gradient:

T∑
t′=0

γt′r(sit′ , a
i
t′)

Notice that t′ will sum from 0 to T , regardless of what value t is at in the middle
summation. What this means is that, even when we are calculating gradients for
logπθ(a10|s10), we are scaling them by rewards gained from timesteps 0 to 9. This
is nonsensical, because actions at time t = 10 cannot affect the past! As such, we
make a slight adjustment to the formula for the PG gradient:

∇θJ(θ) ≈
1

N

N∑
i=0

T∑
t=0

[
∇θlogπθ(a

i
t|sit)

T∑
t′=t

γt′r(sit′ , a
i
t′)

]
Notice that in the third summation, we changed from t′ = 0 to t′ = t.

26.2 Baseline Function
Another way to reduce the variance of the estimator (without increasing the bias)
is to subtract a baseline function (b(st)) from the return. Due to how PG collects
samples to train on, scale variation between returns of trajectories makes the policy

85

gradient unstable. Assume that the average reward through all trajectories is 10. A
“good” trajectory would have a return 15, and a bad trajectory would have a
return of 5. However, due to the fact that these are both positive, the probabilities
of taking actions that lead to these trajectories would both be increased, as opposed
to increasing one and decreasing the other. A baseline fixes this by centering
returns around 0.

∇θJ(θ) ≈
1

N

N∑
i=0

T∑
t=0

[
∇θlogπθ(a

i
t|sit)

((T∑
t′=t

γt′r(sit′ , a
i
t′)

)
−b(st)

)]
The simplest baseline function is represented by R̄, which just is the average
reward over the sampled trajectories:

R̄ =
1

N

N∑
i=0

T∑
t=0

r(sit, a
i
t)

More complex baseline functions can be more effective, but begin to blend the line
between PG and another RL algorithm (Actor-Critic).

26.3 Natural Policy Gradient
The final PG improvement we will be covering (in brief) is Natural Policy Gradient
(NPG). A large issue that comes up within PG methods is overshooting the true
gradient. Remember the ≈ sign we introduced? That was because we sample N
trajectories and compute an approximate gradient to take a step. Agent
performance is very sensitive to small changes in the policy, so misstepping in a
parameter update could make the model completely collapse. We could choose a
very small step size, but this makes model training take much longer. Instead, we
add an additional constraint to our optimization. The notation for this is a bit
confusing, but the general idea is to add the following constraint:

DKL(πθ|πθi) ≤ ϵ

What we are saying here is that we want the difference between how the policy
behaves before vs. after a gradient step to be constrained by ϵ. This helps us reduce
the chance that a huge misstep occurs and throws our agent off track. We constrain
our gradient to push us in a better direction without sacrificing step size! The
implementation of this is beyond the scope of the article so we will not be covering
it.

86

Figure 28: There are a few items in this diagram. The parabola and tangent show the issues of
large gradient steps when you have only a monte-carlo approximation to the true gradient. You
can wildly overshoot where you should be (θi+1).The dimensions of the stretched oval represent
the parameters of the policy, and how steps in the wrong direction can be disastrous since the

policy is very sensitive to small parameter shifts. What we don’t have in RL is an easy objective
to optimize on like the circle. These problems together are why NPG is useful.

Very advanced PG methods build off of NPG, and include trust region policy
optimization (TRPO) and proximal policy optimization (PPO). PPO was the RL
algorithm used to finetune ChatGPT, and is generally very powerful. I suggest
looking into both of these methods if you are interested in exploring policy gradient
methods more.

26.4 Proof for Gradient of the PG Objective
Below is a walkthrough demonstrating how to calculate the gradient of the policy
gradient objective function:

We first take a look at the function we want to calculate the gradient with respect
to θ for:

J(θ) = Eτ∼πθ
[R(τ)]

In English: J(θ) is the expected return of trajectories (R(τ)) explored (τ ∼ πθ) by
the agent. Remember that θ represents the weights and biases of a neural network.

We cannot easily compute the gradient in this expectation form since πθ is nowhere
to be seen in the equation. Through some clever algebra tricks we can change how
the expression looks and take the gradient. Let’s write the expectation in integral
form:

87

J(θ) =

∫
R(τ)pθ(τ) dτ

The term pθ(τ) is the probability of encountering trajectory τ while the policy has
parameters θ. Now let’s introduce the gradient and move it inside the integral:

∇θJ(θ) = ∇θ

∫
R(τ)pθ(τ) dτ

∇θJ(θ) =

∫
∇θR(τ)pθ(τ) dτ

Now what do we do? Here is where something called the “REINFORCE” trick
comes into play I will break it down very clearly below and then explain how it
works:

∇θJ(θ) =

∫
∇θR(τ)pθ(τ) dτ

=

∫
∇θpθ(τ)R(τ) dτ

=

∫
pθ(τ)

pθ(τ)
∇θpθ(τ)R(τ) dτ

=

∫
pθ(τ)

1

pθ(τ)
∇θpθ(τ)R(τ) dτ

=

∫
pθ(τ)∇θlog(pθ(τ))R(τ) dτ

∇θJ(θ) = Eτ∼pθ(τ)[∇θlog(pθ(τ))R(τ)]

We first multiply by pθ(τ)
pθ(τ)

, which is equivalent to one and does not imbalance the
equation. We then use the fact that ∇log(f(x)) = 1

f(x)
∇f(x) from the chain rule

and replace some terms. We finally use the definition of expectation to transform
the integral back to an expectation with respect to τ ∼ pθ(τ).

Now we focus on the ∇θlog(pθ(τ)), expanding, cancelling, then contracting to
arrive at our final result. It is important to understand what exactly pθ(τ) exactly
is. In English, it is the probability of encountering trajectory τ while operating
under policy πθ. It can be written out in long form as such:

pθ(τ) = p(s0)
T−1∏
t=0

πθ(at|st)p(st+1|st, at)

88

We take the probability of being in state s0 from the trajectory to start the product
chain. We multiply it by πθ(a0|s0), the probability that the agent took action a0
from the trajectory given being in state s0. We also consider the probability of
transitioning from state s0 → s1 given that action a0 was taken. This is decided by
the environment, not the agent. We then keep multiplying these terms together
from t = 0 to T − 1. We now introduce the logarithm, which transforms the
equation a bit:

log(pθ(τ)) = log(p(s0)) +
T−1∑
t=0

log(πθ(at|st)) + log(p(st+1|st, at))

The properties of logarithms (log(ab) = log(a) + log(b)) transform this product into
an easy-to-derive sum. We now apply the gradient:

∇θlog(pθ(τ)) = ∇θ

(
log(p(s0)) +

T−1∑
t=0

log(πθ(at|st)) + log(p(st+1|st, at))
)

= ∇θlog(p(s0)) +
T−1∑
t=0

∇θlog(πθ(at|st)) +∇θlog(p(st+1|st, at))

=
T−1∑
t=0

∇θlog(πθ(at|st))

When we take the gradient with respect to θ (∇θ), we can eliminate any terms that
do not concern θ. This is how we were able to get rid of p(s0) and
log(p(st+1|st, at)). Getting rid of this second term is especially crucial, because it
makes our method model-free. We do not need to consider or try to model
environment dynamics at all with this approach! Now we plug ∇θlog(pθ(τ)) back
into the larger equation, and expand R(τ):

∇θJ(θ) = Eτ∼pθ(τ)[∇θlog(pθ(τ))R(τ)]

= Eτ∼pθ(τ)

[T−1∑
t=0

∇θlog(πθ(at|st))R(τ)

]

= Eτ∼pθ(τ)

[T−1∑
t=0

∇θlog(πθ(at|st))
T∑

t′=0

γt′r(st′ , at′)

]
And now, we create a Monte-Carlo approximation to the expectation by sampling
trajectories, and we arrive at the PG gradient we introduced earlier! Note the

89

change from T − 1 to T , we do this for ease of understanding and since we are
already approximating the true gradient the impact is minimal.

∇θJ(θ) ≈
1

N

N∑
i=0

T∑
t=0

[
∇θlogπθ(a

i
t|sit)

T∑
t′=0

γt′r(sit′ , a
i
t′)

]

Synthesis Questions:

1. What is infinite-horizon discounted reward, and why is it important?

2. Answer the following questions about γ, a term within the formulation for infinite-
horizon discounted return.

• What is γ?
• What would a low value of γ do to rewards in the far future?
• Give one scenario where a low γ is good, and one where a high γ is good.
• Why cant γ be ≥ 1?

3. What is J(θ), and what do we want to do with it?

4. How does policy gradient improve the performance of the policy? In other words, how
do we get the probabilities of good actions given a specific state to go up?

5. Explain how the following “tricks” reduce the variance of policy gradient and make it
more stable.

• Return-to-Go
• Baseline functions
• Natural policy gradient/constrained optimization

27 Deep Q-Learning
27.1 Q-Functions and Bellman Equations
Q-Learning will introduce us to our first off-policy RL algorithm, and is the first
step into a whole other realm of RL algorithms. Many of these algorithms use
language or ideas captured within Q-Learning, which is why we discuss it.

The main idea behind Q-Learning is that we want to create a “Quality Function”
that can evaluate state-action pairs. Given some state and an action in that state,
we should get a number that tells us how good things will play out in the future if
we were to take this action. In other words, what is the expected return from time

90

t and onward, if we take action at in state st, and then follow policy πθ from then
on out? This function is usually approximated by a neural network. We will note
this by parameterizing the Q-function with ϕ to represent the weights and biases of
the network. We can write this all out as such below:

Qπ
ϕ(s, a) = Eτ∼πθ

[T∑
t′=t

γt′r(st′ , at′)|st = s, at = a

]
Note that the state-action pair (st, at) is given to the equation, but all other
state-action pairs come about as a consequence of following policy πθ afterwards.

Figure 29: A visualization of what the Q-function takes into account. It averages the rewards
from time t and forward across considers many paths that policy πθ could theoretically take. The
output of a Q-function is called a Q-value. It signifies the “quality” of the given state-action pair.

This might seem somewhat arbitrary, but it is an intuitive way to think about
navigating an environment. Think about yourself. You evaluate what actions you
have available to you by considering their impact on future events. You have the
option to stay at home all day, and in the short term it would be rewarding.
However, in the long term, you understand it is better to exercise and touch grass.
your brain in a way has a well trained “Quality Function” embedded deep within
it!

Now we can expand this intuition and equation into an update rule. With some
algebraic manipulation, we find that the Q-function actually has a recursive
property.

91

Qπ
ϕ(st, at) = Eτ∼πθ

[T∑
t′=t

γt′r(st′ , at′)|st, at
]

= r(st, at) + Eτ∼πθ

[T∑
t′=t+1

γt′r(st′ , at′)|st+1 ∼ p(·|st, at), at+1 ∼ πθ(st)

]
= r(st, at) +Qπ

ϕ(st+1, at+1)

The “st+1 ∼ p(·|st, at), at+1 ∼ πθ(st)” part of the equation just shows where st+1

and at+1 come from: transition dynamics and the policy πθ respectively.

The recursive nature of the Q-function means it can be called a Bellman
equation. This being true is a necessary condition for optimal behavior. If we got
our hands on a “perfect” Q-function like this, where Qπ

ϕ(st, at) is really always equal
to r(st, at) +Qπ

ϕ(st+1, at+1), then we call it Q∗ and can simply query it for the best
action in any state. We would be able to act optimally always. However, this is not
what we have our hands on. We have a neural network that needs to be trained to
have similar behavior to the perfect Q∗. How can we accomplish this? It seems
impossible due to the recursive nature of the equation. However, we can employ a
trick here.

We would like it to be true that Qπ
ϕ(st, at) = r(st, at) +Qπ

ϕ(st+1, at+1). This is an
equation, so both sides are equal and their difference should be 0. So if we make our
“surrogate goal” to be minimizing the difference between the two sides, then the
Q-function we learn will obey this recursive property (to some degree) implicitly!
We define this difference as “surprise”, or TD-error, and denote it as δ. We also
square the difference to ensure it is always positive.

δ =

(
Qπ

ϕ(st, at)− (r(st, at) +Qπ
ϕ(st+1, at+1))

)2

Again: minimizing δ will give us the ideal Q-function and allow the agent to
navigate the environment while maximizing returns.

argmin
ϕ

Eτ∼π[δ]

argmin
ϕ

Eτ∼π

[(
Qπ

ϕ(st, at)− (r(st, at) +Qπ
ϕ(st+1, at+1))

)2]

92

This is naturally off-policy, as the policy that τ comes from and the policy that Qπ

operates off of do not need to be the same.

28 Making Q-Learning Work
28.1 Replay Buffer and Memory
One of the main benefits of an off-policy algorithm are that we can use data from
old trajectories many times instead of once. Since the policy that τ comes from in
the optimization objective does not need to be the same as the actor’s policy, we
can replace τ ∼ π with τ ∼ D, where D is just a database of stored trajectories.
This is usually implemented as a replay buffer. Essentially, the last 100 to 1000
trajectories are stored in a circular queue, and you sample N datapoints from this
buffer to train on. You update the Q-function, and then run the agent in the
environment to collect more trajectories for your queue. Very old trajectories are
eventually thrown out as they probably amount to nothing better than a random
search. However, as the model gets better, the data within D gets richer and more
interesting. Perhaps the agent progresses farther in whatever level it is trying to
beat and encounters new areas it didn’t see before. This “memory” the agent has
at it’s disposal allows it to learn faster and have greater sample efficiency.

argmin
ϕ

Eτ∼D

[(
Qπ

ϕ(st, at)− (r(st, at) +Qπ
ϕ(st+1, at+1))

)2]
28.2 Optimization Stability and Polyak Averaging
By now you may still have a little skepticism on how we can improve Qπ

ϕ if it is
being compared not to a ground truth, but mainly to itself. This is an issue that
Q-Learning has, it is very unstable since the optimization objective changes
constantly. The Q-function learning from itself is like the “blind leading the blind”
in a way. This is where we make small adjustments to the objective. We introduce
Qπ

ϕ̂
, which is a second Q-function we use to improve the stability of our

optimization loop:

argmin
ϕ

Eτ∼D

[(
Qπ

ϕ(st, at)− (r(st, at) +Qπ
ϕ̂
(st+1, at+1))

)2]
It takes the place of the “target” Q-function, the one that processes (st+1, at+1).
Having a second Q-function here makes the optimization more stable, as we can
control how fast it is updated using polyak averaging. Polyak averaging is a way

93

to slow how fast the target Q-function changes its weights. A slower change means
a more stable optimization loop.

ϕ̂← (1− κ)ϕ+ κϕ̂

κ controls the speed of the update, with higher numbers slowing the speed at which
ϕ̂ approaches the same weights and biases as ϕ.

28.3 Explore vs. Exploit and epsilon-Greedy Search
One of the final small concepts to discuss is not actually unique to Q-Learning or
even RL, but benefits them greatly and is worth talking about. In RL, we can have
explore vs. exploit problems crop up. We want to act optimally as much as
possible, but we will never truly know if we are acting optimally unless we search
through every possible route. However if we do this, then many of our actions
would be wasted on sub-optimal routes that turn out to be duds that do not
improve our return. We need to strike a balance. We should explore enough so that
we are confident that we have found the best path, and then immediately switch to
following that path.

If you just always follow the policy as you train an agent, then the agent may never
find the most optimal route. This is because the agent pigeonholes itself into
something it perceives as optimal, but only because it does not know any better.
For example, say that we ask an agent to solve a maze. The fastest way to actually
get to the goal would be to go around the outside of the maze to reach it. However,
our reward schema penalizes moving away from the goal and rewards going towards
it. As such, the agent will never learn the behavior of backing up and taking
temporary low reward for future high rewards and a speedy victory. It will always
move forward into the maze since that is what gives the most reward upfront.

We can combat this issue with an ϵ-greedy search strategy. It is actually quite
simple. With probability ϵ, take a random action instead of the one the policy says
to take. Start this probability quite high, and slowly reduce it to 0 over time. This
makes the first part of the agent’s training cycle random exploration. It is through
this random exploration that the agent may stumble upon efficient solutions, such
as going around the maze.

Implementing ϵ-greedy can allow an agent to randomly encounter paths it would
not have encountered if it just followed what it thought was the “best way
forward”. Somewhat counterintuitively, one powerful way to improve performance
in RL is to actually throw out all of the fancy mathematical formulation for a bit

94

and just throw some dice on which paths to take. These paths can be much better
in the long run for the agent. Perhaps there is a life lesson in here somewhere?

Synthesis Questions:

1. What does the Q-function accept, and what does it return? Why would having this
be useful for an agent navigating an environment?

2. A similar function to the Q-function exists, called the Value function. It is written
as:

V π(s) = Eπθ

[T∑
t′=t

γt′r(st′ , at′)|st = s

]
Do the following:

• Compare and contrast this function to the Q-function. What purpose do you
think it could serve?

• Prove that this is a Bellman equation.

3. What is “surprise” or TD-error? Why does minimizing it allow us to learn a good
Q-function?

4. Why is Q-learning off-policy, and why is this a good thing?

5. How does a replay buffer improve sample efficiency?

6. Why do we use a target network and polyak averaging when training Q-learning algo-
rithms?

7. Write in your own words the explore vs. exploit problem, and explain how ϵ-greedy
search mitigates this issue.

29 When to Use Reinforcement Learning
Deep reinforcement learning is relatively situational, and can be very unstable to
train. It unfortunately takes a lot of compute, hyperparameter tuning, and general
trial-and-error to get something to behave “properly”. RL algorithms, like all AI
applications, are error prone. In classification or regression tasks this is to be
expected and can be mitigated, but if an RL algorithm is deployed in a robot then
a failure can lead to disastrous consequences.

Regardless, RL by design more closely mimics human behavior and can perhaps be
used in the future along with guardrails to accomplish very complex tasks. It is
also the method of choice when the problem you are trying to solve is “game-like”

95

in nature. For example, playing a videogame. It is actually easier to use RL in this
case than it would be to try and use other techniques. The primary avenue to
explore RL further is research at the moment, but personal projects are also very
possible (and impressive!). It is difficult but not impossible to incorporate RL into
student projects with just the techniques in this article. A deeper understanding of
RL requires a lot of math and reading, but you can do it!

30 Conclusion (RL)
This section covered basic RL concepts, introducing common notation and 4 major
algorithms (Behavior Cloning, DAgger, Policy Gradient, Q-Learning). We also
went over the drawbacks of some of these algorithms both intuitively and in depth.
We also covered miscellaneous RL topics like markov decision processes (MDPs),
on vs. off policy algorithms, and explore vs. exploit. RL models are capable of
superhuman-like performance in game-style tasks if trained properly, which can be
quite shocking to many. Understanding the basics of these algorithms can
demystify their power and quell fears about their capabilities.

96

LANGUAGE MODELING

97

31 Introduction to Language Modeling
Language Modeling (LM) is about building systems that can understand, generate,
or transform human language. At its simplest, a language model predicts the next
word in a sequence based on the words that came before it. This ability forms the
foundation of many applications in natural language processing (NLP), such
as chatbots (e.g., ChatGPT), machine translation, text summarization, and search
engines.

Let’s consider an example:

“The quick brown fox jumps ___.”

Given this sentence, a language model would likely predict the word “over” as the
next word, drawing on patterns it has learned from analyzing text. By recognizing
and using patterns in language, these models can:

• Complete sentences.

• Understand context.

• Generate coherent responses or paragraphs.

These are examples of text-generation tasks, where language models predict or
create text based on input. Language models also support other types of NLP
tasks, such as classification or summarization.

Language models work by estimating the probability of a sequence of words.
Formally, the model breaks this problem into smaller steps, predicting one word at
a time based on the words before it:

P (w1, w2, . . . , wn) = P (w1)P (w2|w1)P (w3|w1, w2) . . . P (wn|w1, w2, . . . , wn−1)

This equation may look complex, but it simply means that the probability of an
entire sequence is determined by multiplying the probabilities of each word, one
after another, given their context.

31.1 How Are Language Models Trained?
To train a language model, we show it large amounts of text and teach it to
minimize its prediction errors. Specifically, we compare the words it predicts with
the actual next words in the text and adjust the model to get better over time. The
measure of prediction error is called cross-entropy loss:

98

Loss = − 1

N

N∑
i=1

Ti∑
j=1

logP (w
(i)
j |w

(i)
1 , . . . , w

(i)
j−1)

While this might seem technical, the idea is simple: the closer the model’s
predictions are to the actual text, the smaller this loss becomes. Training involves
minimizing this loss so the model becomes better at predicting language patterns.

31.2 Important Concepts in Language modeling
Below are some of the essentials of language modeling:

• Core Concepts like tokenization, embeddings, and sequence modeling.

• Architectures such as Recurrent Neural Networks (RNNs), Long Short-Term
Memory networks (LSTMs), and Transformers.

• Applications in areas like chatbots, translation, and sentiment analysis.

• Challenges like managing bias, hallucinations, and the scale of large models.
We want to understand the theoretical foundations of language models, how they’re
built and trained, and their real-world impact.

Synthesis Questions:

1. Why is it important for language models to predict the likelihood of sequences accu-
rately? Give a practical example where this capability is crucial.

2. How do language models like GPT differ in their approach to understanding language
compared to traditional rule-based systems?

32 Foundational Concepts
32.1 Tokenization: The First Step
Tokenization breaks raw text into smaller units called tokens, which are the
building blocks for language models. Tokenization is essential because language
models cannot directly process text; they operate on numerical data. The
granularity of tokens varies:

• Word-level Tokenization: Splits text into individual words or phrases.

• Character-level Tokenization: Breaks text into single characters, useful for
languages with complex morphologies.

99

• Subword Tokenization: Balances granularity and vocabulary efficiency,
often employed in modern models like BERT and GPT.

Examples of Tokenization:

• Word-level:

Sentence: "Arya is amazing!"
Tokens: ["Arya", "is", "amazing", "!"]

• Character-level:

Sentence: "Arya"
Tokens: ["A", "r", "y", "a"]

• Subword-level:

Sentence: "unbelievable"
Tokens: ["un", "believable"]

Algorithms like Byte Pair Encoding (BPE) and WordPiece generate subword
tokens, enabling the model to handle unseen words by breaking them into
meaningful subunits. For example, ”transformational” can be tokenized as
[”transform”, ”ational”], capturing semantic and morphological relationships.

Synthesis Questions:

1. Compare and contrast word-level, character-level, and subword tokenization. In which
scenarios might each be most appropriate?

2. What are the advantages of using subword tokenization for handling out-of-vocabulary
words? Provide an example.

3. Given a language with agglutinative morphology (e.g., Turkish), which tokenization
approach would likely work best and why?

32.2 Embeddings: Representing Tokens Numerically
After tokenization, tokens are represented as discrete symbols, which must be
converted into numerical vectors for processing by language models. Embeddings

100

achieve this transformation by mapping tokens to dense vector spaces where
semantic and syntactic relationships are preserved. These embeddings play a crucial
role in enabling models to understand and process natural language effectively.

Embeddings are typically dense vectors, meaning they are compact numerical
representations with most elements being non-zero. This property allows
embeddings to efficiently capture semantic and syntactic relationships between
tokens compared to sparse vectors, which contain many zeros.

Why Embeddings Matter: Embeddings play a crucial role in bridging the gap
between human language and machine computation, enabling efficient downstream
processing.

Key Properties of Embeddings:

• Semantic Similarity: Tokens with similar meanings have similar
embeddings, enabling the model to capture linguistic relationships. Cosine
similarity is preferred as it focuses on the angular distance between vectors,
ignoring magnitude differences that may arise due to varying token frequencies.

• Contextual Adaptability: Contextual embeddings dynamically adjust
based on sentence context, allowing the model to handle polysemous words
(e.g., “bank” can refer to a financial institution or a riverbank).

101

Mathematical Representation:

Embedding(token) = e ∈ Rd

where d is the dimensionality of the embedding space. Each token is represented as
a point in this d-dimensional space, capturing its relationships with other tokens.

Types of Embeddings:

• Pre-trained Static Embeddings:

– Word2Vec: Learns embeddings by maximizing the cosine similarity
between words appearing in similar contexts.

– GloVe (Global Vectors): Embeds words by factorizing a co-occurrence
matrix to capture statistical properties of word distributions.

– FastText: Enhances embeddings by incorporating subword information,
improving robustness for rare and out-of-vocabulary words.

• Contextual Embeddings: Advanced models like BERT (Bidirectional
Encoder Representations from Transformers) and GPT (Generative
Pre-trained Transformers) generate embeddings that depend on the
surrounding context of a token. For example:

Sentence: "The bank is on the riverbank."

The embedding for the word “bank” differs in the financial and river contexts,
reflecting its contextual meaning.

• Embedding Arithmetic: A unique property of embeddings is their ability
to encode semantic relationships through arithmetic operations. For instance:

Embedding(king)−Embedding(man)+Embedding(woman) ≈ Embedding(queen)

This illustrates how embeddings capture relationships between words in dense
vector spaces.

102

Synthesis Questions:

1. Explain the significance of dense vector spaces in embeddings. Why is cosine similarity
often used to measure relationships between embeddings?

2. How do contextual embeddings differ from static embeddings? Illustrate with an ex-
ample involving polysemy.

3. How would you adapt static embeddings for a multilingual task? What challenges
arise?

4. Suppose you need to train embeddings on a highly domain-specific dataset (e.g., med-
ical texts). What modifications or strategies might you employ to make embeddings
effective in this context?

32.3 Sequence Modeling: The Core Objective
At the heart of language modeling lies the task of sequence prediction, which
involves estimating the probability of a sequence of tokens. Meanwhile,
autoregressive models, such as GPT, predict the next token in a sequence by
conditioning on all previous tokens. This process is iterative, generating one token
at a time, which allows these models to produce coherent sequences of text.
Sequence prediction can be mathematically expressed as:

P (x1, x2, . . . , xT) =
T∏
t=1

P (xt|x<t)

Here:

• xt represents the current token at time step t.

• x<t denotes all tokens preceding xt (i.e., the context or history).

Let us break down the sequence P (”The quick brown fox jumps”) step by step
using the chain rule of probability. Here, the sequence contains five tokens: ”The”,
”quick”, ”brown”, ”fox”, and ”jumps”. The joint probability of the sequence is
decomposed as:

P (”The quick brown fox jumps”) = P (”The”) · P (”quick” | ”The”)
· P (”brown” | ”The quick”)
· P (”fox” | ”The quick brown”)
· P (”jumps” | ”The quick brown fox”)

103

Each term in this product represents the conditional probability of a token given
the tokens that precede it in the sequence.

Step-by-Step Calculation (Hypothetical Probabilities):
• P (”The”) = 0.4

• P (”quick” | ”The”) = 0.3

• P (”brown” | ”The quick”) = 0.2

• P (”fox” | ”The quick brown”) = 0.5

• P (”jumps” | ”The quick brown fox”) = 0.6

Thus, the joint probability of the entire sequence is calculated as:

P (”The quick brown fox jumps”) = 0.4 · 0.3 · 0.2 · 0.5 · 0.6 = 0.0072

This step-by-step breakdown illustrates how language models leverage the chain
rule of probability to predict tokens sequentially while accounting for prior context.
Example with Numerical Probabilities: Consider a toy vocabulary with three
words: ”cat”, ”dog”, and ”bird”. Given ht, the model computes:

P (”cat”|x<t) =
ez”cat”∑

w∈{”cat”,”dog”,”bird”} e
zw

where z”cat” = W · ht[”cat”]. This ensures probabilistic coherence for output
predictions. By chaining these probabilities, the model constructs meaningful
sequence-level predictions.

Training Objective: Negative Log-Likelihood (NLL) Loss Language models
are typically trained using the negative log-likelihood (NLL) loss function,
defined as:

L = −
T∑
t=1

logP (xt|x<t)

The NLL loss penalizes the model when it assigns low probabilities to the actual
tokens in a sequence. Minimizing this loss ensures the model learns to generate
sequences with high probability for real-world language patterns.
Key Insights:

• The sequence prediction task assumes a left-to-right (or autoregressive)
approach for models like GPT or a bidirectional approach for models like
BERT.

104

• Accurate modeling of P (xt|x<t) requires capturing long-range dependencies,
grammatical structure, and semantic coherence within the sequence.

Illustrative Example: Consider the sentence:

"A journey of a thousand miles begins with a single step."

During training, the model learns to predict each word sequentially:

P (”A”), P (”journey”|”A”), P (”of”|”A journey”), . . .

The cumulative product of these probabilities represents the likelihood of the entire
sentence. Sequence modeling is the foundation for understanding how language
models generate coherent and contextually relevant outputs.

Synthesis Questions:

1. Derive the negative log-likelihood loss formula from the sequence probability expres-
sion.

2. How does the choice of P (xt|x<t) influence the quality of a language model’s output?
Provide a concrete example.

3. How might bidirectional modeling (as in BERT) handle P (xt|x<t) differently from
autoregressive models like GPT? What are the trade-offs?

33 Core Architectures of Language Models
33.1 Recurrent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs) are designed to process sequential data
by maintaining a hidden state that evolves over time. The hidden state ht at time
step t encodes information from both the current input token xt and the previous
hidden state ht−1. This can be expressed as:

ht = f(Wxxt +Whht−1 + b)

Here:

• Wx and Wh are weight matrices for the input and hidden state, respectively.

• b is a bias term.

• f is a non-linear activation function, often tanh or ReLU .

105

RNNs capture sequential dependencies effectively for short sequences. However,
they struggle with long-term dependencies due to the vanishing gradient
problem, where gradients become too small to update weights during
backpropagation.

Extensions to RNNs: To address the limitations of vanilla RNNs, two popular
architectures were developed:

• Long Short-Term Memory (LSTM): LSTMs introduce memory cells and
gating mechanisms to better capture long-term dependencies. The gates
include:

– Forget Gate: Decides which information to discard.
– Input Gate: Determines what new information to store.
– Output Gate: Controls what information to output.

The update equations for LSTMs enable the model to selectively retain
relevant information, mitigating vanishing gradients.

• Gated Recurrent Units (GRU): GRUs are a simplified variant of LSTMs
that merge the forget and input gates into a single update gate, reducing the
number of parameters. GRUs are computationally efficient while maintaining
performance on many tasks.

Illustrative Example: For a sequence of tokens:

["The", "sun", "is", "shining"]

An RNN processes one token at a time, updating its hidden state to encode
cumulative context. By the end of the sequence, the hidden state represents the
semantic meaning of the entire input.
While RNNs and their variants were widely used for language tasks, they have
largely been replaced by architectures like Transformers, which overcome the
limitations of sequential processing.

33.2 Transformers: A Paradigm Shift
Transformers revolutionized language modeling by eliminating the need for
sequential processing, enabling parallel computation and dramatically improving
efficiency. At the core of the Transformer architecture is the self-attention
mechanism, which allows the model to weigh the importance of different tokens in

106

a sequence regardless of their position.

Self-Attention Mechanism: Self-attention captures dependencies across tokens
in the sequence, allowing the model to weigh their relevance irrespective of their
position. This is critical for capturing relationships such as subject-object
dependencies in a sentence.
The generic attention operation is defined as:

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V

Here:

• Q (Query), K (Key), and V (Value) are projections of the input sequence,
computed using learned weight matrices.

• dk is the dimensionality of the Key vectors, and the term 1√
dk

scales the dot
product to prevent large values from dominating the softmax.

• The output is a weighted sum of the Value vectors, where weights are
determined by the similarity of Query and Key vectors.

Intuitive Explanation of Q, K, and V :
To understand the roles of Q, K, and V in self-attention:

• Query (Q): Represents the token that is ”asking the question,” focusing on
specific relationships or dependencies.

• Key (K): Represents all tokens in the sequence and acts as a ”key” to
determine the relevance of other tokens to the query.

• Value (V): Contains the actual content or information of each token, which
is weighted by the relevance (computed from Q and K) and aggregated to
produce the final output.

Key Features of Transformers:

• Parallelism: Unlike RNNs, which process tokens sequentially, Transformers
compute attention for all tokens simultaneously, significantly speeding up
training on large datasets.

• Positional Encodings: Since Transformers do not have inherent sequential
processing, they use positional encodings to inject information about the order
of tokens. Without positional encodings, Transformers would treat sequences
as bags of tokens, losing critical information about token order and sequence

107

structure. These encodings are added to the token embeddings and are
typically derived from sinusoidal functions or learned directly:

PE(pos,2i) = sin
(pos

100002i/d

)
, PE(pos,2i+1) = cos

(pos

100002i/d

)
where pos is the position, i is the dimension index, and d is the embedding size.

Multi-Head Attention: To capture relationships across different subspaces,
Transformers use multiple attention heads:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O

Each head performs self-attention independently, and the results are concatenated
and linearly transformed.

Decomposing Multi-Head Attention: Each attention head computes attention
scores independently, allowing the model to focus on different aspects of the input
sequence. For a single head, the computation is as follows:

headi = Attention(QWQ
i , KWK

i , V W V
i)

where:

• WQ
i ,WK

i ,W V
i are learned weight matrices specific to head i.

• Q,K, V are query, key, and value matrices derived from the input embeddings.

• Attention(Q,K, V) = softmax
(

QK⊤
√
dk

)
V , as explained earlier.

After computing the attention for all heads, the outputs are concatenated and
linearly transformed:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O

where WO is a learned projection matrix. This design allows Transformers to
capture multiple relational patterns simultaneously.

108

Figure 30: Multi-Head Attention Mechanism: Each head captures unique relationships and
combines them for comprehensive context.

Applications and Impact: The introduction of Transformers has led to
breakthroughs in language modeling, powering models like BERT and GPT. These
models have achieved state-of-the-art performance on a wide range of NLP tasks,
from machine translation to question answering, establishing Transformers as the
foundation of modern NLP.

Example: Consider the sentence:
"The cat sat on the mat."

Using self-attention, the Transformer can determine that ”cat” is most relevant to
”sat” and ”mat,” while also capturing the structural relationships between tokens.

109

This capability enables deep contextual understanding across an entire sequence.

Synthesis Questions:

1. Why do RNNs struggle with long-term dependencies, and how do LSTMs and GRUs
address this issue?

2. Mathematically describe the gating mechanism in LSTMs or GRUs and explain its
significance.

3. How does self-attention enable Transformers to capture relationships across the entire
sequence? Use the attention formula in your explanation.

4. Explain the role of positional encodings in Transformers. What issues would arise
without them?

34 NLP Tasks Enabled by Language Models
Language models empower a diverse array of natural language processing (NLP)
tasks, leveraging their ability to understand and generate text. Below are some key
applications:

• Text Generation: Create coherent and contextually relevant text by
predicting tokens one step at a time.

• Machine Translation: Convert text from one language to another using
sequence-to-sequence models, e.g., translating ”Hello, world!” to ”Bonjour, le
monde!”.

• Sentiment Analysis: Analyze the sentiment of a sentence or document,
categorizing it as positive, negative, or neutral. For instance:

Input: "The movie was fantastic!"
Output: Positive Sentiment

• Summarization: Generate concise and informative summaries of longer
texts, enabling efficient content consumption. For example:

Input: A detailed news article.
Output: "Key highlights of today's global summit..."

110

• Named Entity Recognition (NER): Identify and classify entities such as
names, dates, locations, and organizations within text. For example:

Input: "Elon Musk was born in South Africa."
Output: [Elon Musk: PERSON, South Africa: LOCATION]

• Question Answering (QA): Respond to user queries by extracting or
generating answers based on a given context. For instance:

Context: "The capital of France is Paris."
Question: "What is the capital of France?"
Answer: "Paris"

Example: Text Generation in Action

Input: "To be or not to be, that is the..."
Model Prediction: "question. Whether 'tis nobler in the mind..."

These examples showcase the versatility of language models in addressing a wide
spectrum of tasks, enabling advancements in areas like customer service, content
creation, and data analysis. Their ability to handle multiple tasks with minimal
task-specific customization demonstrates their adaptability and utility in real-world
applications.

Synthesis Questions:

1. Choose one NLP task (e.g., summarization or sentiment analysis) and explain how
language models are trained to perform this task.

2. How does text generation differ fundamentally from tasks like NER or sentiment anal-
ysis?

35 Advanced Topics in Language Modeling
35.1 Challenges in Large Language Models (LLMs)
The advent of large language models (LLMs) such as GPT-4 has unlocked
unprecedented capabilities in natural language understanding and generation.
However, these advancements come with significant societal and technical

111

challenges, which must be carefully mitigated to ensure responsible deployment.
These challenges are particularly critical in sensitive applications such as
healthcare, legal systems, and public discourse, where the stakes are high.
Challenges:

• Hallucination: LLMs sometimes generate information that appears plausible
but is factually incorrect or fabricated. This occurs because models optimize
for fluency and coherence rather than factual accuracy.
Example:

Prompt: "Who is the President of Mars?"
Model Output: "John Carter, elected in 2024."

The model confidently provides an answer to an implausible prompt,
demonstrating its tendency to prioritize coherence over factual correctness. In
critical contexts, such as medical or legal advice, hallucinations could lead to
harmful decisions or misinformation.

• Bias and Fairness: LLMs may inadvertently reinforce or amplify societal
biases embedded in their training data.

– Gender and Occupational Bias: For example:
Prompt: "The doctor is..."
Potential Output: "...he is a skilled surgeon."

This output reflects a gender bias learned from historical data.
– Cultural or Linguistic Biases: Cultural or linguistic biases may arise

when training data predominantly represents one demographic, leading to
underperformance on underrepresented groups. For example, a model
trained mostly on English data might struggle with accurately processing
idiomatic expressions or nuanced syntax in less-represented languages.

In sensitive domains like healthcare, biased outputs could worsen disparities
and harm underrepresented groups.

• Scaling Costs: The performance of LLMs often scales with size, but this
comes at a steep cost. Larger models demand exponentially more
computational resources, including memory, processing power, and energy.
This makes training and deployment prohibitively expensive for many
organizations, potentially creating accessibility barriers.

112

• Explainability and Interpretability: Understanding why LLMs produce
specific outputs remains a challenge, limiting trust in high-stakes applications
such as medical or legal systems. Without transparent decision-making
processes, users may hesitate to rely on LLMs for critical decisions.

• Ethical Considerations: Misuse of LLMs for generating disinformation,
spam, or harmful content raises ethical concerns that demand stringent
safeguards. The potential for misuse underscores the importance of
establishing rigorous monitoring systems and access restrictions to mitigate
harmful applications. For example, LLMs could be used to:

– Spread Disinformation: Automate the creation of false narratives or
propaganda.

– Commit Fraud: Generate phishing emails or impersonations.
– Produce Harmful Content: Generate hate speech or incite violence.

Monitoring systems should include real-time detection of misuse patterns and
proactive countermeasures such as content moderation pipelines. Access
restrictions can involve role-based permissions or licensing to prevent
unauthorized deployments.

Addressing these challenges is critical to ensuring that LLMs remain reliable,
ethical, and accessible.

Mitigation Strategies: Researchers and developers have proposed several
countermeasures to address these challenges and minimize their impact:

• Explainable AI: Techniques such as attention visualization, saliency maps,
and counterfactual reasoning help illuminate why a model generates specific
outputs, improving transparency and trust.

• Dataset Auditing: Regular audits of training datasets can uncover and
correct biases, ensuring balanced representation.

• Content Moderation Pipelines: Automated tools combined with human
review can filter out harmful or misleading outputs before they reach users.

• Fine-Tuning: Tailoring LLMs on domain-specific, curated datasets can
reduce hallucinations and improve accuracy in specialized tasks.

• Post-Processing Techniques: Verification layers, such as fact-checking
modules or ensemble approaches, can refine outputs and filter incorrect or
harmful information.

113

• Efficient Architectures: Exploring model compression techniques like
pruning and distillation can reduce computational costs without sacrificing
performance.

• Governance and Usage Guidelines: Clear ethical standards, supported by
audits and enforcement mechanisms, ensure responsible use of LLMs.

By addressing these challenges and adopting mitigation strategies, LLMs can be
deployed responsibly to maximize their benefits while minimizing harm. This
balance is essential for their continued advancement and integration into critical
societal functions.

35.2 Reinforcement Learning with Human Feedback (RLHF)
Reinforcement Learning with Human Feedback (RLHF) enhances language model
alignment with user expectations by incorporating human-provided evaluations into
the training process. This approach is particularly effective in fine-tuning large
models to ensure they generate useful, safe, and contextually appropriate outputs.
Why RLHF is Necessary: While raw next-token prediction enables a language
model to predict text sequences, it does not, on its own, result in a chatbot or an
aligned system capable of nuanced and context-aware responses. RLHF addresses
this gap by fine-tuning pre-trained models to better adhere to human expectations,
making them suitable for interactive applications like chatbots, where safe and
reliable behavior is critical.
Key Steps in RLHF:

• Collect Human Feedback: Human annotators evaluate and rank multiple
outputs generated by the base model for a given prompt.

• Train the Reward Model: The feedback trains a model to score outputs
based on alignment with human preferences.

• Fine-Tune the Base Model: Reinforcement learning algorithms like
Proximal Policy Optimization (PPO) optimize the base model to
produce outputs that maximize the reward signal.

Example: Ranking Outputs for a Controversial Prompt
Consider the prompt: ”What are the benefits and drawbacks of AI in the military?”
The model generates three outputs:

• Output 1: Balanced and nuanced, highlighting both advantages (e.g.,
precision, reduced casualties) and ethical concerns (e.g., autonomy,
accountability).

114

• Output 2: Overly dismissive, focusing only on the dangers of AI in the
military.

• Output 3: Optimistic but one-sided, emphasizing efficiency and precision
without addressing ethical challenges.

Annotator Rankings:
• Rank 1: Output 1 (balanced and nuanced).
• Rank 2: Output 2 (valid concern but lacks nuance).
• Rank 3: Output 3 (lacks ethical considerations).

The reward model uses these rankings to train the base model to prioritize nuanced
and balanced outputs over simplistic or biased responses.
This process ensures that language models respond appropriately to complex or
sensitive prompts, enhancing their reliability and trustworthiness in real-world
applications.

Benefits of RLHF:
• Improves Relevance: Outputs are more contextually accurate and

user-specific.
• Reduces Harmful Outputs: Penalizes toxic, biased, or harmful content.
• Aligns with Human Values: Reflects human values more closely through

iterative feedback.
RLHF is a critical tool for enhancing the usability and safety of large language
models, enabling them to deliver high-quality, aligned outputs in complex
real-world applications.

Synthesis Questions:

1. Explain why hallucination occurs in LLMs. Suggest one specific method to reduce
hallucination in model outputs.

2. Discuss the trade-offs between model size and computational cost. How might future
innovations reduce this tension?

3. Why is human feedback critical in RLHF? Discuss the challenges of designing an
effective reward model.

4. Compare RLHF to supervised fine-tuning. What are the advantages and limitations
of each approach?

115

36 When to Use Language Models
Language modeling has taken the world by storm, for those both in and out of the
“AI” space. Advances within LM have allowed for the advent of chatbots and a
whole new wave of AI tools and integrations. Understanding what goes on under
the hood of these models will allow you to place the proper amount of trust in their
results and cut through the sales hype. Use language models in situations where
their structure benefits them. There is no need to force a token-prediction model to
somehow solve a simple classification problem! Be wary of how data-hungry these
models can be, as well as training costs. plenty of pretrained models can be found
and used quite easily on sites like HuggingFace.

37 Conclusion (LM)
By delving into foundational concepts, core architectures, and advanced techniques
like Reinforcement Learning with Human Feedback (RLHF), this article has
provided a comprehensive overview of the current landscape of language modeling.
The future of NLP depends not only on technological improvements but also on
addressing ethical considerations and ensuring that models align with human
values and societal needs.

Language modeling has revolutionized the field of natural language processing,
enabling breakthroughs in tasks ranging from text classification and translation to
advanced conversational systems like chatbots. Central to this progress are
architectural innovations such as Transformers, which have redefined how models
process and generate human language. Alongside these advancements, challenges
such as hallucination, scalability, and bias have emerged, underscoring the need for
ongoing research and innovation.

As we continue to push the boundaries of what language models can achieve,
fostering a deeper understanding of their mechanisms and implications will be
crucial for building intelligent, responsible, and impactful NLP systems.

116

https://huggingface.co/models

Thank You for Reading :)
- The Interactive Intelligence Team

117

	MACHINE LEARNING
	Introduction to Machine Learning
	Data Splitting: Train and Test Sets
	Regression and Classification Tasks

	Linear Regression: Regression
	Fundamentals of Linear Regression
	Understanding Sum of Squared Errors (SSE)
	Minimizing SSE: Simple Case
	Minimizing SSE: General Case
	Ridge and LASSO Regressions

	Logistic Regression: Classification
	Fundamentals of Logistic Regression
	The Sigmoid Function and Its Role
	Training with the Log-Likelihood Loss
	Extensions to Multiclass Classification
	Why It's Called “Regression”

	K-Means Clustering: Unsupervised Learning
	Introduction to Unsupervised Learning
	How K-Means Clustering Works
	Minimizing Within-Cluster Distance
	Choosing the Number of Clusters
	Limitations of K-Means Clustering

	K-Means vs. K-Medians Clustering
	Introduction to K-Medians Clustering
	K-Medians Use Cases
	Key Differences Between K-Means and K-Medians

	Other ML Concepts
	Bias-Variance Tradeoff
	Convexity

	When to Use Machine Learning Algorithms
	Conclusion (ML)
	DEEP LEARNING
	Introduction to Neural Networks
	Fundamental Structure
	Flow of Information
	The Perceptron and XOR

	Non-Linearity and Activation Functions
	Introducing Nonlinearities
	Common Activation Functions

	Backpropagation
	Loss Functions
	Derivatives and Gradients
	Gradient Flow
	Optimizers and Learning Rates

	Regularization
	Dropout
	Batch Normalization

	When to Use Deep Learning/Neural Networks
	Conclusion (DL)
	COMPUTER VISION
	Introduction to Computer Vision
	What is Computer Vision?

	Convolutional Neural Networks
	Convolutional Layer
	Nonlinearity in CNNs
	Pooling Layer
	Fully Connected Layer
	Loss Functions, Optimizers, and Regularization

	Self-Supervised Learning
	Methods of SSL
	Importance of SSL

	Image Segmentation
	Techniques of Segmentation

	When to Use Computer Vision
	Conclusion (CV)
	REINFORCEMENT LEARNING
	What is Reinforcement Learning?
	Problem Definition
	Common Symbols and Definitions
	Markov Decision Process
	On vs. Off-Policy RL

	Imitation Learning
	Basic Behavior Cloning
	Problems with Behavior Cloning

	Proofs for Problems with Behavior Cloning
	Mode Averaging

	DAgger Algorithm
	Policy Gradient
	Basic Policy Gradient

	Advanced Policy Gradient Concepts
	Return-to-Go
	Baseline Function
	Natural Policy Gradient
	Proof for Gradient of the PG Objective

	Deep Q-Learning
	Q-Functions and Bellman Equations

	Making Q-Learning Work
	Replay Buffer and Memory
	Optimization Stability and Polyak Averaging
	Explore vs. Exploit and epsilon-Greedy Search

	When to Use Reinforcement Learning
	Conclusion (RL)
	LANGUAGE MODELING
	Introduction to Language Modeling
	How Are Language Models Trained?
	Important Concepts in Language modeling

	Foundational Concepts
	Tokenization: The First Step
	Embeddings: Representing Tokens Numerically
	Sequence Modeling: The Core Objective

	Core Architectures of Language Models
	Recurrent Neural Networks (RNNs)
	Transformers: A Paradigm Shift

	NLP Tasks Enabled by Language Models
	Advanced Topics in Language Modeling
	Challenges in Large Language Models (LLMs)
	Reinforcement Learning with Human Feedback (RLHF)

	When to Use Language Models
	Conclusion (LM)

